标签:des blog http io ar os sp for on
http://www.lydsy.com/JudgeOnline/problem.php?id=2875
矩阵的话很容易看出来。。。。。我就不写了。太水了。
然后乘法longlong会溢出。。。那么我们用快速乘。。。就是将快速幂的乘法变成加法。。。这种很简单吧。。
#include <cstdio> #include <cstring> #include <cmath> #include <string> #include <iostream> #include <algorithm> #include <queue> #include <set> #include <map> using namespace std; typedef unsigned long long ll; #define rep(i, n) for(int i=0; i<(n); ++i) #define for1(i,a,n) for(int i=(a);i<=(n);++i) #define for2(i,a,n) for(int i=(a);i<(n);++i) #define for3(i,a,n) for(int i=(a);i>=(n);--i) #define for4(i,a,n) for(int i=(a);i>(n);--i) #define CC(i,a) memset(i,a,sizeof(i)) #define read(a) a=getint() #define print(a) printf("%d", a) #define dbg(x) cout << (#x) << " = " << (x) << endl #define error(x) (!(x)?puts("error"):0) #define rdm(x, i) for(int i=ihead[x]; i; i=e[i].next) inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<‘0‘||c>‘9‘; c=getchar()) if(c==‘-‘) k=-1; for(; c>=‘0‘&&c<=‘9‘; c=getchar()) r=r*10+c-‘0‘; return k*r; } ll m, a, c, x0, n, g; typedef ll mtx[2][2]; mtx t; ll mul(ll a, ll b) { ll ret=0; while(b) { if(b&1) ret=(ret+a)%m; a=(a+a)%m; b>>=1; } return ret; } void mtxmul(mtx a, mtx b, mtx c, int la, int lb, int lc) { rep(i, la) rep(j, lc) { t[i][j]=0; rep(k, lb) t[i][j]=(t[i][j]+mul(a[i][k], b[k][j]))%m; } rep(i, la) rep(j, lc) c[i][j]=t[i][j]; } mtx ma, mb, mc; int main() { cin >> m >> a >> c >>x0 >> n >> g; ma[0][0]=x0; ma[0][1]=1; mb[0][0]=a; mb[0][1]=0; mb[1][0]=c; mb[1][1]=1; mc[0][0]=mc[1][1]=1; while(n) { if(n&1) mtxmul(mc, mb, mc, 2, 2, 2); n>>=1; mtxmul(mb, mb, mb, 2, 2, 2); } mtxmul(ma, mc, ma, 2, 2, 2); printf("%llu\n", ma[0][0]%g); return 0; }
包含6个用空格分割的m,a,c,X0,n和g,其中a,c,X0是非负整数,m,n,g是正整数。
输出一个数,即Xn mod g
【BZOJ】2875: [Noi2012]随机数生成器(矩阵乘法+快速乘)
标签:des blog http io ar os sp for on
原文地址:http://www.cnblogs.com/iwtwiioi/p/4149218.html