标签:style blog io ar color os sp for on
function f=WTF(I); % compute the 128-D wavelet transform feature of image I % Input: % I: the input image % Output: % f:128-D feature %%warning:normalization must be performed after all the features are extracted from the dataset %I=imread('D:/2.jpg'); if(ndims(I)==3)I=rgb2gray(I);end wname='db8'; [Lo_D,Hi_D,Lo_R,Hi_R] = wfilters(wname); scale=3; %%PWT feature,24-D array (4+4+4)*2 cA=I; f=[]; for i=1:scale [c,s]= wavedec2(cA,1,Lo_D,Hi_D); msize=s(1,1)*s(1,2); cA=c(1,1:msize); %imshow(uint8(cA)); cA=reshape(cA,s(1,1),s(1,2)); %cH cV cD cH=c(1,msize+(1:msize)); cV=c(1,2*msize+(1:msize)); cD=c(1,3*msize+(1:msize)); cH=reshape(cH,s(2,1),s(2,2)); cV=reshape(cV,s(2,1),s(2,2)); cD=reshape(cD,s(2,1),s(2,2)); %figure,colormap gray %subplot(221),imagesc(cA); %subplot(222),imagesc(cH); %subplot(223),imagesc(cV); %subplot(224),imagesc(cD); %X = waverec2(c,s,'db8'); %f=[mean(mean(cA) std2(cA)]; f=[f mean2((abs(cA))) std2(abs(cA)) mean2((abs(cH))) std2(abs(cH)) mean2((abs(cV))) std2(abs(cV)) mean2((abs(cD))) std2(abs(cD))]; %f=[f mean2(((cA))) std2((cA)) mean2(((cH))) std2((cH)) mean2(((cV))) std2((cV)) mean2(((cD))) std2((cD))]; end f1=f; f=[]; %%TWT feature,104-D 4*(1+3+9)*2 array set=[]; candidate={}; cA=I; set{1}=cA;%%store the frequency (LL,LH,HL) to be decomposed candidate{1}=cA;%% for s=1:scale count=0; set=candidate; for i=1:length(set) cA=set{i}; %for i=1:3 [c,s]= wavedec2(cA,1,Lo_D,Hi_D); msize=s(1,1)*s(1,2); cA=c(1,1:msize); %imshow(uint8(cA)); cA=reshape(cA,s(1,1),s(1,2)); %cH cV cD cH=c(1,msize+(1:msize)); cV=c(1,2*msize+(1:msize)); cD=c(1,3*msize+(1:msize));%%HH level cH=reshape(cH,s(2,1),s(2,2)); cV=reshape(cV,s(2,1),s(2,2)); cD=reshape(cD,s(2,1),s(2,2));%%HH count=count+1; candidate{count}=cA; count=count+1; candidate{count}=cH; count=count+1; candidate{count}=cV; %figure,colormap gray %subplot(221),imagesc(cA); %subplot(222),imagesc(cH); %subplot(223),imagesc(cV); %subplot(224),imagesc(cD); %%%%%X = waverec2(c,s,'db8'); %f=[mean(mean(cA) std2(cA)]; f=[f mean2((abs(cA))) std2(abs(cA)) mean2((abs(cH))) std2(abs(cH)) mean2((abs(cV))) std2(abs(cV)) mean2((abs(cD))) std2(abs(cD))]; %end end count end f2=f; f=[f1 f2];
参考资料:
【1】NUS-WIDE: A Real-World Web Image Database from,National University of Singapore
【2】Texture Features for Browsing and Retrieval of Image Data
【3】Texture Analysis and Classification with Tree-structured Wavelet Transform
标签:style blog io ar color os sp for on
原文地址:http://blog.csdn.net/lansatiankongxxc/article/details/41792931