码迷,mamicode.com
首页 > 其他好文 > 详细

-----[DP] LCS小结

时间:2014-12-08 13:51:44      阅读:161      评论:0      收藏:0      [点我收藏+]

标签:style   blog   http   io   ar   color   os   sp   for   

bubuko.com,布布扣

额、、失误、、

LCS是Longest Common Subsequence的缩写,即最长公共子序列。一个序列,如果是两个或多个已知序列的子序列,且是所有子序列中最长的,则为最长公共子序列。

 

DP、O(n^2)解法:

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
#define max(a,b) ((a)>(b)?(a):(b))
#define N 1010

int p,q;
int a[N];
int b[N];
int dp[N][N];

void solve()
{
    int i,j;
    memset(dp,0,sizeof(dp));
    for(i=1;i<=p;i++)
    {
        for(j=1;j<=q;j++)
        {
            if(a[i]==b[j])
            {
                dp[i][j]=dp[i-1][j-1]+1;
            }
            else
            {
                dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
            }
        }
    }
    cout<<dp[p][q]<<endl;
}
int main()
{
    int i;
    while(scanf("%d%d",&p,&q)!=EOF)
    {
        for(i=1;i<=p;i++)
        {
            scanf("%d",&a[i]);
        }
        for(i=1;i<=q;i++)
        {
            scanf("%d",&b[i]);
        }
        solve();
    }
    return 0;
}

 

O(nlogn)解法:

参考http://www.cs.ucf.edu/courses/cap5937/fall2004/Longest%20common%20subsequence.pdf

最长公共子序列 的 nlogn 的算法本质是 将该问题转化成 最长增序列(LIS),因为 LIS 可以用nlogn实现,所以求LCS的时间复杂度降低为 nlogn。

转化:将LCS问题转化成LIS问题。

               假设有两个序列 s1[ 1~6 ] = { a, b, c , a, d, c }, s2[ 1~7 ] = { c, a, b, e, d, a, b }。

               记录s1中每个元素在s2中出现的位置, 再将位置按降序排列, 则上面的例子可表示为:

               loc( a)= { 6, 2 }, loc( b ) = { 7, 3 }, loc( c ) = { 1 }, loc( d ) = { 5 }。

               将s1中每个元素的位置按s1中元素的顺序排列成一个序列s3 = { 6, 2, 7, 3, 1, 6, 2, 5, 1 }。

               在对s3求LIS得到的值即为求LCS的答案。(这点我也只是大致理解,读者可以自己理解甚至证明。)

上面一段话转载自:http://blog.csdn.net/non_cease/article/details/6918848

1、当无重复元素时:

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
#define N 1010

int len;
int p,q;
int a[N];
int b[N];
int dp[N];

void convert()
{
    int i,hash[N]={0};
    for(i=1;i<=p;i++)
    {
        hash[a[i]]=i;
    }
    for(i=1;i<=q;i++)
    {
        b[i]=hash[b[i]];
    }
}
int up_bound(int k)
{
    int l=1,r=len+1;
    while(l<r)
    {
        int m=(l+r)>>1;
        if(dp[m]<=k) l=m+1;
        else r=m;
    }
    return l;
}
void solve()
{
    len=0;
    dp[0]=-0x7ffffff;
    for(int i=1;i<=q;i++)
    {
        if(!b[i]) continue;
        if(b[i]>dp[len]) dp[++len]=b[i];
        else
        {
            int pos=up_bound(b[i]);
            dp[pos]=b[i];
        }
    }
    printf("%d\n",len);
}
int main()
{
    while(scanf("%d%d",&p,&q)!=EOF)
    {
        for(int i=1;i<=p;i++)
        {
            scanf("%d",&a[i]);
        }
        for(int i=1;i<=q;i++)
        {
            scanf("%d",&b[i]);
        }
        convert();
        solve();
    }
    return 0;
}

2、当有重复元素时:

#include <iostream>
#include <cstdio>
#include <vector>
#include <cstring>
using namespace std;
#define N 10010

int n;
int p,q;
int len;
int a[N];
int b[N];
int s[N];
int dp[N];

void convert()
{
    vector<int> v[N];
    for(int i=1;i<=p;i++)
    {
        v[a[i]].push_back(i);
    }
    n=0;
    for(int i=1;i<=q;i++)
    {
        for(int j=v[b[i]].size()-1;j>=0;j--)
        {
            s[++n]=v[b[i]][j];
        }
    }
}
int up_bound(int k)
{
    int l=1,r=len+1;
    while(l<r)
    {
        int m=(l+r)>>1;
        if(dp[m]<=k) l=m+1;
        else r=m;
    }
    return l;
}

void solve()
{
    len=0;
    dp[0]=-0x7fffffff;
    for(int i=1;i<=n;i++)
    {
        if(s[i]>dp[len]) dp[++len]=s[i];
        else
        {
            int pos=up_bound(s[i]-1);
            dp[pos]=s[i];
        }
    }
    printf("%d\n",len);
}
int main()
{
    while(scanf("%d%d",&p,&q)!=EOF)
    {
        for(int i=1;i<=p;i++)
        {
            scanf("%d",&a[i]);
        }
        for(int i=1;i<=q;i++)
        {
            scanf("%d",&b[i]);
        }
        convert();
        solve();
    }
    return 0;
}

 

-----[DP] LCS小结

标签:style   blog   http   io   ar   color   os   sp   for   

原文地址:http://www.cnblogs.com/hate13/p/4150815.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!