标签:opencv2 视频 lines circle 路线路牌检测
linefinder.h
#if !defined LINEF #define LINEF #include<cmath> #include <opencv2/core/core.hpp> #include <opencv2/imgproc/imgproc.hpp> #define PI 3.1415926 using namespace cv; using namespace std; class LineFinder { private: // original image Mat img; // vector containing the end points // of the detected lines vector<Vec4i> lines; // accumulator resolution parameters double deltaRho; double deltaTheta; // minimum number of votes that a line // must receive before being considered int minVote; // min length for a line double minLength; // max allowed gap along the line double maxGap; public: // Default accumulator resolution is 1 pixel by 1 degree // no gap, no mimimum length LineFinder() : deltaRho(1), deltaTheta(PI/180), minVote(10), minLength(0.), maxGap(0.) {} // Set the resolution of the accumulator void setAccResolution(double dRho, double dTheta) { deltaRho= dRho; deltaTheta= dTheta; } // Set the minimum number of votes void setMinVote(int minv) { minVote= minv; } // Set line length and gap void setLineLengthAndGap(double length, double gap) { minLength= length; maxGap= gap; } // Apply probabilistic Hough Transform vector<Vec4i> findLines(Mat& binary) { lines.clear(); HoughLinesP(binary,lines,deltaRho,deltaTheta,minVote, minLength, maxGap); return lines; } // Draw the detected lines on an image void drawDetectedLines(Mat &image, Scalar color=Scalar(255,0,0)) { // Draw the lines vector<Vec4i>::const_iterator it2= lines.begin(); while (it2!=lines.end()) { Point pt1((*it2)[0],(*it2)[1]); Point pt2((*it2)[2],(*it2)[3]); double slope = fabs(double((*it2)[1]-(*it2)[3])/((*it2)[0]-(*it2)[2])); // double slope = fabs (((double)(lines[1].y-lines[0].y))/((double)(lines[1].x-lines[0].x))); //求直线在坐标系中的斜率 //double length=sqrt((line[1].y-line[0].y)*(line[1].y-line[0].y)+(line[1].x-line[0].x)*(line[1].x-line[0].x)); ////线段的长度 //if((slope>0.3)&&(slope<1000)&&(length>50)&&(length<500)) //{ // line[0].y= line[0].y+ROI_rect_src.y; // line[1].y =line[1].y+ROI_rect_src.y; // cvLine(frame, line[0], line[1], CV_RGB(255,0,0), 3, CV_AA, 0 ); //} if((slope>0.52)&&(slope<2)) { line( image, pt1, pt2, color,3,8,0); } ++it2; } } }; #endif
main.cpp
#include<stdio.h> #include <iostream> #include <vector> #include <opencv2/core/core.hpp> //#include <opencv2/imageproc/imageproc.hpp> #include <opencv2/highgui/highgui.hpp> #include<string> #include <sstream> #include "linefinder.h" //#include "edgedetector.h" #include <opencv2\opencv.hpp> using namespace cv; using namespace std; //#define PI 3.1415926 int main() { stringstream ss; string str; stringstream sss; string strs; for(int i=1;i<=80;i++) { str="C:\\Users\\hsn\\Desktop\\直线检测\\直线检测\\作业2\\";//选择F:\\图片\\中的5张图片 ss.clear(); ss<<str; ss<<i; ss<<".jpg"; ss>>str; Mat image=imread(str,1); // Read input image //Mat image= imread("1.jpg",1); if (!image.data) return 0; /*namedWindow("Original Image"); imshow("Original Image",image);*/ Mat img=image(Rect(0.4*image.cols,0.58*image.rows,0.4*image.cols,0.3*image.rows)); Mat contours; Canny(img,contours,80,100); Mat contoursInv; threshold(contours,contoursInv,128,255,THRESH_BINARY_INV); // Display the image of contours /*namedWindow("Canny Contours"); imshow("Canny Contours",contoursInv);*/ // Create LineFinder instance LineFinder ld; // Set probabilistic Hough parameters ld.setLineLengthAndGap(60,40); ld.setMinVote(30); vector<Vec4i> li= ld.findLines(contours); ld.drawDetectedLines(img); /*namedWindow(" HoughP"); imshow(" HoughP",img);*/ /*namedWindow("Detected Lines with HoughP"); imshow("Detected Lines with HoughP",image);*/ Mat imgGry; cvtColor(image,imgGry,CV_BGR2GRAY); GaussianBlur(imgGry,imgGry,Size(5,5),1.5); vector<Vec3f> circles; HoughCircles(imgGry, circles, CV_HOUGH_GRADIENT, 2, // accumulator resolution (size of the image / 2) 150, // minimum distance between two circles 200, // Canny high threshold 100, // minimum number of votes 25, 50); // min and max radius cout << "Circles: " << circles.size() << endl; // Draw the circles vector<Vec3f>::const_iterator itc= circles.begin(); while (itc!=circles.end()) { circle(image, Point((*itc)[0], (*itc)[1]), // circle centre (*itc)[2], // circle radius Scalar(255), // color 2); // thickness ++itc; } /*namedWindow(str); imshow(str,image);*/ strs="C:\\Users\\hsn\\Desktop\\直线检测\\直线检测\\处理后\\";//选择F:\\图片\\中的5张图片 sss.clear(); sss<<strs; sss<<i; sss<<".jpg"; sss>>strs; imwrite(strs,image); } int num = 1; CvSize size = cvSize(1024,960); //视频帧格式的大小 double fps = 3;// <span style="white-space:pre"> </span>//每秒钟的帧率 CvVideoWriter *writer = cvCreateVideoWriter("C:\\Users\\hsn\\Desktop\\直线检测\\直线检测\\1.avi",-1,fps,size); //创建视频文件 char cname[100]; sprintf(cname,"C:\\Users\\hsn\\Desktop\\直线检测\\直线检测\\处理后\\%d.jpg",num); //加载图片的文件夹,图片的名称编号是1开始1,2,3,4,5.。。。 IplImage *src = cvLoadImage(cname); if (!src) { return 0; } IplImage *src_resize = cvCreateImage(size,8,3); //创建视频文件格式大小的图片 cvNamedWindow("avi"); while (src) { cvShowImage("avi",src_resize); cvWaitKey(1); cvResize(src,src_resize); //<span style="white-space:pre"> </span>//将读取的图片设置为视频格式大小相同 cvWriteFrame(writer,src_resize); //保存图片为视频流格式 cvReleaseImage(&src);// <span style="white-space:pre"> </span> //释放空间 num++; sprintf(cname,"C:\\Users\\hsn\\Desktop\\直线检测\\直线检测\\处理后\\%d.jpg",num); src = cvLoadImage(cname); //循环读取数据 } cvReleaseVideoWriter(&writer); cvReleaseImage(&src_resize); waitKey(); return 0; }
opencv2实现多张图片路线路牌(直线和圆)检测并将处理后的图片合成视频_计算机视觉大作业2
标签:opencv2 视频 lines circle 路线路牌检测
原文地址:http://blog.csdn.net/hanshuning/article/details/41865423