码迷,mamicode.com
首页 > 其他好文 > 详细

poj 1269 线段相交/平行

时间:2014-12-11 22:19:31      阅读:318      评论:0      收藏:0      [点我收藏+]

标签:style   blog   io   ar   color   os   sp   for   on   

模板题

注意原题中说的线段其实要当成没有端点的直线。被坑了= =

  1    #include <cmath>
  2    #include <cstdio>
  3    #include <iostream>
  4    #include <cstring>
  5    using namespace std;
  6 
  7    #define eps 1e-8
  8    #define PI acos(-1.0)//3.14159265358979323846
  9    //判断一个数是否为0,是则返回true,否则返回false
 10    #define zero(x)(((x)>0?(x):-(x))<eps)
 11    //返回一个数的符号,正数返回1,负数返回2,否则返回0
 12    #define _sign(x)((x)>eps?1:((x)<-eps?2:0))
 13 
 14   struct point
 15   {
 16       double x,y;
 17       point(){}
 18       point(double xx,double yy):x(xx),y(yy)
 19       {}
 20   };
 21   struct line
 22   {
 23       point a,b;
 24       line(){}      //默认构造函数
 25       line(point ax,point bx):a(ax),b(bx)
 26       {}
 27   };//直线通过的两个点,而不是一般式的三个系数
 28 
 29     int n;
 30     double ax1,ay1,ax2,ay2,bx1,by1,bx2,by2;
 31 
 32    //求矢量[p0,p1],[p0,p2]的叉积
 33    //p0是顶点
 34    //若结果等于0,则这三点共线
 35    //若结果大于0,则p0p2在p0p1的逆时针方向
 36    //若结果小于0,则p0p2在p0p1的顺时针方向
 37    double xmult(point p1,point p2,point p0)
 38    {
 39        return(p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y);
 40    }
 41    //计算dotproduct(P1-P0).(P2-P0)
 42    double dmult(point p1,point p2,point p0)
 43    {
 44        return(p1.x-p0.x)*(p2.x-p0.x)+(p1.y-p0.y)*(p2.y-p0.y);
 45    }
 46    //两点距离
 47    double distance(point p1,point p2)
 48    {
 49        return sqrt((p1.x-p2.x)*(p1.x-p2.x)+(p1.y-p2.y)*(p1.y-p2.y));
 50    }
 51    //判三点共线
 52    int dots_inline(point p1,point p2,point p3)
 53    {
 54        return zero(xmult(p1,p2,p3));
 55    }
 56    //判点是否在线段上,包括端点
 57    int dot_online_in(point p,line l)
 58    {
 59        return zero(xmult(p,l.a,l.b))&&(l.a.x-p.x)*(l.b.x-p.x)<eps&&(l.a.y-p.y)*(l.b.y-p.y)<eps;
 60    }
 61    //判点是否在线段上,不包括端点
 62    int dot_online_ex(point p,line l)
 63    {
 64        return dot_online_in(p,l)&&(!zero(p.x-l.a.x)||!zero(p.y-l.a.y))&&(!zero(p.x-l.b.x)||!zero(p.y-l.b.y));
 65    }
 66    //判两点在线段同侧,点在线段上返回0
 67    int same_side(point p1,point p2,line l)
 68    {
 69        return xmult(l.a,p1,l.b)*xmult(l.a,p2,l.b)>eps;
 70    }
 71    //判两点在线段异侧,点在线段上返回0
 72    int opposite_side(point p1,point p2,line l)
 73    {
 74        return xmult(l.a,p1,l.b)*xmult(l.a,p2,l.b)<-eps;
 75    }
 76    //判两直线平行
 77    int parallel(line u,line v)
 78    {
 79        return zero((u.a.x-u.b.x)*(v.a.y-v.b.y)-(v.a.x-v.b.x)*(u.a.y-u.b.y));
 80    }
 81    //判两直线垂直
 82    int perpendicular(line u,line v)
 83    {
 84        return zero((u.a.x-u.b.x)*(v.a.x-v.b.x)+(u.a.y-u.b.y)*(v.a.y-v.b.y));
 85    }
 86    //判两线段相交,包括端点和部分重合
 87    int intersect_in(line u,line v)
 88    {
 89        if(!dots_inline(u.a,u.b,v.a)||!dots_inline(u.a,u.b,v.b))
 90            return!same_side(u.a,u.b,v)&&!same_side(v.a,v.b,u);
 91        return dot_online_in(u.a,v)||dot_online_in(u.b,v)||dot_online_in(v.a,u)||dot_online_in(v.b,u);
 92    }
 93    //判两线段相交,不包括端点和部分重合
 94    int intersect_ex(line u,line v)
 95    {
 96        return opposite_side(u.a,u.b,v)&&opposite_side(v.a,v.b,u);
 97    }
 98    //计算两直线交点,注意事先判断直线是否平行!
 99    //线段交点请另外判线段相交(同时还是要判断是否平行!)
100    point intersection(line u,line v)
101    {
102        point ret=u.a;
103        double t=((u.a.x-v.a.x)*(v.a.y-v.b.y)-(u.a.y-v.a.y)*(v.a.x-v.b.x))/((u.a.x-u.b.x)*(v.a.y-v.b.y)-(u.a.y-u.b.y)*(v.a.x-v.b.x));
104        ret.x+=(u.b.x-u.a.x)*t;
105        ret.y+=(u.b.y-u.a.y)*t;
106        return ret;
107    }
108 
109   int main()
110   {
111       cin>>n;
112       cout<<"INTERSECTING LINES OUTPUT"<<endl;
113       for (int i=1;i<=n;i++)
114       {
115         cin>>ax1>>ay1>>ax2>>ay2>>bx1>>by1>>bx2>>by2;
116         point a1(ax1,ay1);  point a2(ax2,ay2);
117         point b1(bx1,by1);  point b2(bx2,by2);
118         line l1=line(point(ax1,ay1),point(ax2,ay2));
119         line l2=line(point(bx1,by1),point(bx2,by2));
120         if ((dots_inline(a1,a2,b1)>0)&&(dots_inline(a1,a2,b2)>0))
121             cout<<"LINE";
122         else if (parallel(l1,l2)>0)     cout<<"NONE";
123         else
124         {
125             point tm=intersection(l1,l2);
126             cout<<"POINT ";
127             printf("%.2f %.2f",tm.x,tm.y);
128         }
129         cout<<endl;
130       }
131       cout<<"END OF OUTPUT"<<endl;
132       return 0;
133   }

 

poj 1269 线段相交/平行

标签:style   blog   io   ar   color   os   sp   for   on   

原文地址:http://www.cnblogs.com/pdev/p/4158596.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!