标签:blog http io ar os sp for on 2014
题目链接:点击打开链接
题意:计算 a^b %c 但其中b很大,可能会达到10^1000000, 故有降幂公式 a^b %c= a^(b%phi(c)+phi(c)) %c (b>=phi(c))
#include <algorithm> #include <iostream> #include <cstring> #include <cstdlib> #include <string> #include <cctype> #include <vector> #include <cstdio> #include <cmath> #include <queue> #include <stack> #include <map> #include <set> #define maxn 10100 #define _ll __int64 #define ll long long #define INF 0x3f3f3f3f #define Mod 1000000007 #define pp pair<int,int> #define ull unsigned long long using namespace std; int a,c;char b[1000010]; ll phi(ll n) { ll m=(ll)sqrt(n+0.5),ans=n; for(ll i=2;i<=m;i++) { if(n%i==0) { ans=ans/i*(i-1); while(n%i==0)n/=i; } } if(n>1)ans=ans/n*(n-1); return ans; } ll pow_mod(ll a,ll n,ll p) { if(n==0)return 1; ll ans=pow_mod(a,n/2,p); ans=ans*ans%p; if(n&1)ans=ans*a%p; return ans; } void solve() { int len=strlen(b);ll tem=phi(c),sb; if(len<=10) { sscanf(b,"%I64d",&sb); if(sb>=tem) printf("%I64d\n",pow_mod(a,sb%tem+tem,c)); else printf("%I64d\n",pow_mod(a,sb,c)); return ; } ll ans=0; for(int i=0;i<len;i++) ans=(ans*10+(b[i]-'0'))%tem; printf("%I64d\n",pow_mod(a,ans+tem,c)); } int main() { while(~scanf("%I64d %s %I64d",&a,b,&c)) solve(); return 0; }
FZU 1759-Super A^B mod C(快速幂+大整数取模+欧拉函数)
标签:blog http io ar os sp for on 2014
原文地址:http://blog.csdn.net/qq_16255321/article/details/41896581