标签:style http io ar color sp for strong on
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授。
PDF格式学习笔记下载(Academia.edu)
第6章课程讲义下载(PDF)
Summary
Selected Problems
1. Using Gaussian elimination to solve $$\begin{cases}4x_1+x_2-x_3=-2\\ 5x_1+x_2+2x_3=4\\ 6x_1+x_2+x_3=6\end{cases}$$
Solution:
Forward elimination: $$\begin{bmatrix}4& 1& -1& -2\\ 5& 1& 2& 4\\ 6& 1& 1& 6\end{bmatrix}\Rightarrow \begin{cases} R_2-{5\over4}R_1\\ R_3-{3\over2}R_1\end{cases}\begin{bmatrix}4& 1& -1& -2\\ 0& -{1\over4}& {13\over4}& {13\over2}\\ 0& -{1\over2}& {5\over2}& 9\end{bmatrix}$$ $$\Rightarrow R_3-2R_2\begin{bmatrix}4& 1& -1& -2\\ 0& -{1\over4}& {13\over4}& {13\over2}\\ 0& 0& -4& -4\end{bmatrix}$$ Back substitution: $$\begin{cases}-4x_3=-4\\ -{1\over4}x_2+{13\over4}x_3={13\over2}\\ 4x_1+x_2-x_3=-2\end{cases} \Rightarrow \begin{cases}x_3=1\\ -{1\over4}x_2+{13\over4}={13\over2}\\ 4x_1+x_2-1=-2\end{cases}$$ $$\Rightarrow \begin{cases}x_3=1\\ x_2 = -13\\ 4x_1-13=-1 \end{cases}\Rightarrow \begin{cases}x_1 = 3\\ x_2=-13\\ x_3=1 \end{cases}$$
2. Find the determinant of $$[A] = \begin{bmatrix}25& 5& 1\\ 64& 8& 1\\ 144& 12& 1\end{bmatrix}$$
Solution:
Forward elimination $$[A] = \begin{bmatrix}25& 5& 1\\ 64& 8& 1\\ 144& 12& 1\end{bmatrix}\Rightarrow\begin{cases}R_2 - {64\over25}R_1\\ R_3-{144\over25}R_1\end{cases} \begin{bmatrix}25& 5& 1\\ 0& -{24\over5}& -{39\over25}\\ 0& -{84\over5}& -{119\over25} \end{bmatrix}$$ $$\Rightarrow R_3-{7\over2}R_2 \begin{bmatrix}25& 5& 1\\ 0& -{24\over5}& -{39\over25}\\ 0& 0 & {7\over10} \end{bmatrix}$$ This is an upper triangular matrix and its determinant is the product of the diagonal elements $$\det(A) = 25\times(-{24\over5})\times{7\over10}=-84 $$
3. Find the determinant of $$[A] = \begin{bmatrix}10& -7& 0\\ -3& 2.099& 6\\ 5& -1& 5\end{bmatrix}$$
Solution:
Forward elimination $$[A] = \begin{bmatrix}10& -7& 0\\ -3& 2.099& 6\\ 5& -1& 5 \end{bmatrix}\Rightarrow\begin{cases}R_2 + {3\over 10}R_1\\ R_3-{1\over2}R_1\end{cases} \begin{bmatrix}10& -7& 0\\ 0& -{1\over1000}& 6\\ 0& {5\over2}& 5 \end{bmatrix}$$ $$\Rightarrow R_3+2500R_2 \begin{bmatrix}10& -7& 0\\ 0& -{1\over1000}& 6\\ 0& 0 & 15005 \end{bmatrix}$$ This is an upper triangular matrix and its determinant is the product of the diagonal elements $$\det(A) = 10 \times(-{1\over1000})\times15005=-150.05$$
4. Using Gaussian elimination to solve $$\begin{cases}3x_1-x_2 - 5x_3 = 9\\ x_2-10x_3=0\\ -2x_1+x_2=-6\end{cases}$$
Solution:
Forward elimination: $$\begin{bmatrix}3& -1& -5& 9\\ 0& 1& -10& 0\\ -2& 1& 0& -6\end{bmatrix}\Rightarrow R_3+{2\over3}R_1 \begin{bmatrix}3& -1& -5& 9\\ 0& 1& -10& 0\\ 0& {1\over3}& -{10\over3}& 0\end{bmatrix}$$ $$\Rightarrow R_3-{1\over3}R_2 \begin{bmatrix}3& -1& -5& 9\\ 0& 1& -10& 0\\ 0& 0 & 0 & 0\end{bmatrix}$$ Back substitution: $$\begin{cases}x_2-10x_3=0\\ 3x_1-x_2-5x_3=9\end{cases} \Rightarrow \begin{cases}x_2 = 10x_3\\ 3x_1-15x_3 = 9\end{cases} \Rightarrow \begin{cases}x_1 = 5x_3+3\\ x_2 = 10x_3\end{cases}$$ where $x_3$ is arbitrary.
A.Kaw矩阵代数初步学习笔记 6. Gaussian Elimination
标签:style http io ar color sp for strong on
原文地址:http://www.cnblogs.com/zhaoyin/p/4160799.html