标签:style blog ar color sp strong on div 问题
17.11 给定rand5(),实现一个方法rand7().也即,给定一个产生0到4(含)随机数的方法,编写一个产生0到6(含)随机数的方法。
解法:
这个函数要正确实现,则返回0到6之间的值,每个值的概率必须为1/7.
1 第一个尝试(调用次数固定)
第一个尝试时,我们可能会想产生出0到9之间的值,然后再除以7取余数。代码大致如下:
int rand7() { int v=rand5()+rand5(); return v%7; }
可惜的是,上面的代码无法以相同的概率产生所有值。
方法二:
rand5可以随机生成1,2,3,4,5;rand7可以随机生成1,2,3,4,5,6,7。 rand5并不能直接产生6,7,所以直接用rand5去实现函数rand7似乎不太好入手。 如果反过来呢?给你rand7,让你实现rand5,这个好实现吗?
一个非常直观的想法就是不断地调用rand7,直到它产生1到5之间的数,然后返回。 代码如下:
int Rand5(){ int x = ~(1<<31); // max int while(x > 5) x = Rand7(); return x; }
等等,这个函数可以等概率地产生1到5的数吗?首先,它确确实实只会返回1到5这几个数, 其次,对于这些数,都是由Rand7等概率产生的(1/7),没有对任何一个数有偏袒, 直觉告诉我们,Rand5就是等概率地产生1到5的。事实呢?让我们来计算一下, 产生1到5中的数的概率是不是1/5就OK了。比如说,让我们来计算一下Rand5生成1 的概率是多少。上面的函数中有个while循环,只要没生成1到5间的数就会一直执行下去。 因此,我们要的1可能是第一次调用Rand7时产生,也可能是第二次,第三次,…第n次。 第1次就生成1,概率是1/7;第2次生成1,说明第1次没生成1到5间的数而生成了6,7, 所以概率是(2/7)*(1/7),依次类推。生成1的概率计算如下:
P(x=1)=1/7 + (2/7) * 1/7 + (2/7)^2 * 1/7 + (2/7)^3 * 1/7 + ... =1/7 * (1 + 2/7 + (2/7)^2 + ...) // 等比数列 =1/7 * 1 / (1 - 2/7) =1/7 * 7/5 =1/5
上述计算说明Rand5是等概率地生成1,2,3,4,5的(1/5的概率)。从上面的分析中, 我们可以得到一个一般的结论,如果a > b,那么一定可以用Randa去实现Randb。其中, Randa表示等概率生成1到a的函数,Randb表示等概率生成1到b的函数。代码如下:
// a > b int Randb(){ int x = ~(1<<31); // max int while(x > b) x = Randa(); return x; }
回到正题,现在题目要求我们要用Rand5来实现Rand7,只要我们将Rand5 映射到一个能产生更大随机数的Randa,其中a > 7,就可以套用上面的模板了。 这里要注意一点的是,你映射后的Randa一定是要满足等概率生成1到a的。比如,
Rand5() + Rand5() - 1
上述代码可以生成1到9的数,但它们是等概率生成的吗?不是。生成1只有一种组合: 两个Rand5()都生成1时:(1, 1);而生成2有两种:(1, 2)和(2, 1);生成6更多。 它们的生成是不等概率的。那要怎样找到一个等概率生成数的组合呢?
我们先给出一个组合,再来进行分析。组合如下:
5 * (Rand5() - 1) + Rand5()
Rand5产生1到5的数,减1就产生0到4的数,乘以5后可以产生的数是:0,5,10,15,20。 再加上第二个Rand5()产生的1,2,3,4,5。我们可以得到1到25, 而且每个数都只由一种组合得到,即上述代码可以等概率地生成1到25。OK, 到这基本上也就解决了。
套用上面的模板,我们可以得到如下代码:
int Rand7(){ int x = ~(1<<31); // max int while(x > 7) x = 5 * (Rand5() - 1) + Rand5() // Rand25 return x; }
上面的代码有什么问题呢?可能while循环要进行很多次才能返回。 因为Rand25会产生1到25的数,而只有1到7时才跳出while循环, 生成大部分的数都舍弃掉了。这样的实现明显不好。我们应该让舍弃的数尽量少, 于是我们可以修改while中的判断条件,让x与最接近25且小于25的7的倍数相比。 于是判断条件可改为x > 21,于是x的取值就是1到21。 我们再通过取模运算把它映射到1-7即可。代码如下:
int Rand7(){ int x = ~(1<<31); // max int while(x > 21) x = 5 * (Rand5() - 1) + Rand5() // Rand25 return x%7 + 1; }
这个实现就比上面的实现要好,并且可以保证等概率生成1到7的数。
让我们把这个问题泛化一下,从特殊到一般。现在我给你两个生成随机数的函数Randa, Randb。Randa和Randb分别产生1到a的随机数和1到b的随机数,a,b不相等 (相等就没必要做转换了)。现在让你用Randa实现Randb。
通过上文分析,我们可以得到步骤如下:
// A > b int Randb(){ int x = ~(1<<31); // max int while(x > b*(A/b)) // b*(A/b)表示最接近A且小于A的b的倍数 x = RandA(); return x%b + 1; }
从上面一系列的分析可以发现,如果给你两个生成随机数的函数Randa和Randb, 你可以通过以下方式轻松构造Randab,生成1到a*b的随机数。
Randab = b * (Randa - 1) + Randb Randab = a * (Randb - 1) + Randa
如果再一般化一下,我们还可以把问题变成:给你一个随机生成a到b的函数, 用它去实现一个随机生成c到d的函数。有兴趣的同学可以思考一下,这里不再讨论。
标签:style blog ar color sp strong on div 问题
原文地址:http://www.cnblogs.com/wuchanming/p/4161158.html