标签:acm algorithm icpc sgu 快速幂取模
SGU - 117
Time Limit: 250MS | Memory Limit: 4096KB | 64bit IO Format: %I64d & %I64u |
Description
Find amount of numbers for given sequence of integer numbers such that after raising them to the M-th power they will be divided by K.
Input
Input consists of two lines. There are three integer numbers N, M, K(0<N, M, K<10001) on the first line. There are N positive integer numbers ? given sequence (each number is not more than 10001) ? on the second line.
Output
Write answer for given task.
Sample Input
4 2 50 9 10 11 12
Sample Output
1
Author | : Michael R. Mirzayanov |
Resource | : PhTL #1 Training Contests |
Date | : Fall 2001 |
Source
题意:第一行先给出n,m,k三个整数,第二行给出n个整数,判断这些整数的m的次方是否能被k整除,,简单快速幂即可。。
AC代码:
#include <cstdio> #include <cstring> #include <algorithm> using namespace std; int q_pow(int n, int m, int k) { int result=1; while(m) //快速幂 { if(m&1) //判断是否为奇数 result=(result*n)%k; n=n*n%k; m>>=1; } return result%k; } int main() { int n, m, k; while(scanf("%d %d %d", &n, &m, &k)!=EOF) { int ans = 0; for(int i=0; i<n; i++) { int a; scanf("%d", &a); if(q_pow(a, m, k)==0) ans++; } printf("%d\n", ans); } return 0; }
标签:acm algorithm icpc sgu 快速幂取模
原文地址:http://blog.csdn.net/u014355480/article/details/41911071