码迷,mamicode.com
首页 > 其他好文 > 详细

图像傅里叶变换(快速傅里叶变换FFT)

时间:2014-12-16 01:21:46      阅读:4888      评论:0      收藏:0      [点我收藏+]

标签:fft   傅里叶变换   图像傅里叶谱   二维傅里叶变换   

   学习DIP第7天,图像傅里叶变换

习惯性,开篇废话

       今天公司的网不知怎么了,死活打不开CSDN,公司有100多架客机,也有极限速度60kb/s的网速,还有3K的工资。

图像FFT

        上篇已经介绍了关于2D FFT的相关知识,这篇只介绍在图像中的应用,对于一幅图像,做二维FFT后,即可得到其傅里叶变换,傅里叶变换后是二维复数矩阵,因为二维数组,如果是实数,是可以通过变换到0~255通过灰度图像显示出来,而变换结果是复数,所以我们通过显示其幅度,即复数的模,来显示傅里叶谱(幅度谱),不废话,上图:
bubuko.com,布布扣
原图
bubuko.com,布布扣
FFT结果
        可以看出,原图为大名鼎鼎的Lenna图,下面的为FFT后的幅度谱,其主要数值分布在四个顶点附近,图像中的位置坐标表示为(u,v),四个顶点分别表示(0,0),(0,max(v)),(max(u),0),(max(u),max(v)),至于为啥是这四个点,我也没研究明白,但是(0,0)附近是可以解释为低频分量较多,但是我们平时看到matlab的图是在图像中心的,这一步需要经过一个简单的变换,只要将原图中(坐标为表示x,y)x+y为偶数时,f(x,y)变成是其相反数,即-f(x,y),我们称之为Shift;之后可以得到:
bubuko.com,布布扣
中心化后的幅度谱

          
       此图中图像聚集在图像中心,与Matlab中结果类似,但Matlab中显示的更多,具体原因不清楚,但我感觉是Matlab
对最大值做了处理,因为最大值和最小值之间相差太大,所以拉伸后在变换到0~255,有些结果小于1,无法显示。
bubuko.com,布布扣
中心局部放大
        经过傅里叶逆变换后,再把图像Shift回来,即可得到原图,下面再描述一些变换结果:
bubuko.com,布布扣
bubuko.com,布布扣
bubuko.com,布布扣
bubuko.com,布布扣
bubuko.com,布布扣
bubuko.com,布布扣
bubuko.com,布布扣
#include "Image_FFT.h"


void FFT_Shift(double * src,int size_w,int size_h){
    for(int i=0;i<size_w;i++){
        for(int j=0;j<size_h;j++){
            if((i+j)%2)
                src[i*size_w+j]=-src[i*size_w+j];
        }
        
    }
    
}
void ImageFFT(IplImage * src,Complex * dst){
    //FFT_Shift(src, src);
    if(src->depth!=IPL_DEPTH_8U)
        exit(0);
    int width=src->width;
    int height=src->height;
    double *image_data=(double*)malloc(sizeof(double)*width*height);
    for(int i=0;i<width;i++){
        for(int j=0;j<height;j++){
            image_data[i*width+j]=GETPIX(src, i, j);
        }
        
    }
    FFT_Shift(image_data,width, height);//图像中心化
    FFT2D(image_data, dst, width, height);
    free(image_data);
    
}
void Nomalsize(double *src,double *dst,int size_w,int size_h){
    double  max=0.0,min=DBL_MAX;
    for(int i=0;i<size_w*size_h;i++){
        max=src[i]>max?src[i]:max;
        min=src[i]<min?src[i]:min;
    }
    double step=255.0/(max-min);
    //printf("%d",test);
    printf("max:%lf   min:%lf\n",max,min);
    for(int i=0;i<size_w*size_h;i++){
        dst[i]=(src[i]-min)*step;
        dst[i]*=45.9*log((double)(1+dst[i]));
    }
    
}
void getAmplitudespectrum(Complex * src,int size_w,int size_h,IplImage *dst){
    double *despe=(double *)malloc(sizeof(double)*size_w*size_h);
    if(despe==NULL)
        exit(0);
    double real=0.0;
    double imagin=0.0;
    
    for(int i=0;i<size_w;i++)
        for(int j=0;j<size_h;j++){
            real=src[i*size_w+j].real;
            imagin=src[i*size_w+j].imagin;
            despe[i*size_w+j]=sqrt(real*real+imagin*imagin);
            
        }
    Nomalsize(despe, despe, size_w, size_h);
    for(int i=0;i<size_w;i++)
        for(int j=0;j<size_h;j++){
            cvSetReal2D(dst, i, j, despe[i*size_w+j]);
            
        }
    free(despe);
    
}

void ImageIFFT(Complex *src,IplImage *dst,int size_w,int size_h){
    Complex *temp_c=(Complex*)malloc(sizeof(Complex)*size_w*size_h);
    if(temp_c==NULL)
        exit(0);
    for(int i=0;i<size_w*size_h;i++)
        Copy_Complex(&src[i],&temp_c[i]);
    Complex *temp=(Complex*)malloc(sizeof(Complex)*size_w*size_h);
    if(temp==NULL)
        exit(0);
    double *temp_d=(double *)malloc(sizeof(double)*size_w*size_h);
    if(temp_d==NULL)
        exit(0);
    IFFT2D(temp_c,temp,size_w,size_h);
    for(int i=0;i<size_w;i++)
        for(int j=0;j<size_h;j++){
            temp_d[i*size_h+j]=temp[i*size_h+j].real;
        }
    FFT_Shift(temp_d, size_w, size_h);
    for(int i=0;i<size_w;i++)
        for(int j=0;j<size_h;j++){
            cvSetReal2D(dst, i, j, temp_d[i*size_h+j]);
        }
    free(temp);
    free(temp_c);
    free(temp_d);

}


          下一篇继续研究傅里叶变换的应用;

图像傅里叶变换(快速傅里叶变换FFT)

标签:fft   傅里叶变换   图像傅里叶谱   二维傅里叶变换   

原文地址:http://blog.csdn.net/tonyshengtan/article/details/41951175

(0)
(1)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!