标签:style blog http ar io color os sp for
Given an unsorted array, find the maximum difference between the successive elements in its sorted form.
Try to solve it in linear time/space.
Return 0 if the array contains less than 2 elements.
You may assume all elements in the array are non-negative integers and fit in the 32-bit signed integer range.
Credits:
Special thanks to @porker2008 for adding this problem and creating all test cases.
给定一个未排序的数组,找出其排序后的序列中两个相邻元素之间的最大差值。
最好在线性时间、线性空间复杂度内完成。
如果数组少于2个元素,返回0
可以假设数组中的所有元素均为非负整数,并且在32位带符号整数的范围以内。
基数排序(radix sort)/桶排序(bucket sort)
假设有N个元素A到B。
那么最大差值不会大于ceiling[(B - A) / (N - 1)]
令bucket(桶)的大小len = ceiling[(B - A) / (N - 1)],则最多会有(B - A) / len + 1个桶
对于数组中的任意整数K,很容易通过算式loc = (K - A) / len找出其桶的位置,然后维护每一个桶的最大值和最小值
由于同一个桶内的元素之间的差值至多为len - 1,因此最终答案不会从同一个桶中选择。
对于每一个非空的桶p,找出下一个非空的桶q,则q.min - p.max可能就是备选答案。返回所有这些可能值中的最大值。
class Solution { public: int maximumGap(vector<int> &num) { if (num.empty() || num.size() < 2) return 0; int Max = *max_element(num.begin(), num.end()); int Min = *min_element(num.begin(), num.end()); int gap = (int)ceil((double)(Max-Min)/(num.size() - 1)); int bucketNum = (int) ceil((double)(Max-Min)/gap); vector<int> bucketsMin(bucketNum, INT_MAX); vector<int> bucketsMax(bucketNum, INT_MIN); for (int i = 0; i < num.size(); i++) { if (num[i] == Max || num[i] == Min) continue; int idx = (num[i] - Min) / gap; bucketsMin[idx] = min(bucketsMin[idx], num[i]); bucketsMax[idx] = max(bucketsMax[idx], num[i]); } int ans = INT_MIN; int previous = Min; for (int i = 0; i < bucketNum; i++) { if (bucketsMin[i] == INT_MAX || bucketsMax[i] == INT_MIN) continue; ans = max(ans, bucketsMin[i] - previous); previous = bucketsMax[i]; } ans = max(ans, Max - previous); return ans; } };
标签:style blog http ar io color os sp for
原文地址:http://blog.csdn.net/u011345136/article/details/41963051