[题目]设$p>1,f\in C(0,+\infty)$,且$\int_0^\infty|f(t)|^pdt$收敛,证明:
\left\{\int_0^\infty\left[\frac{1}{x}\int_0^x|f(t)|dt\right]^pdx\right\}^{\frac{1}{p}}\leq\frac{p}{p-1}\left(\int_0^\infty|f(t)|^pdt\right)^{\frac{1}{p}}.
[证明]我们首先证明:\begin{equation}\label{e1}\int_0^N\chi_{\{\int_0^x|f(t)|dt\geq
x\}}dx\leq\int_0^N|f(x)|\chi_{\{\int_0^x|f(t)|dt\geq x\}}dx,\forall
N>0.\end{equation}
事实上,命$F(x)=\int_0^x(|f(t)|-1)dt$。我们取一列$t_m\in\{x\in[0,N]:F(x)\geq 0\}$,$t_m\rightarrow \mathop{\rm sup}\{x\in[0,N]:F(x)\geq 0\}$,则$\{x\in[0,t_m]:F(x)<0\}$是一开集。设它的构成区间为$\{(a_j,b_j):j\geq 1\}$。由连续性可知$F(a_j)=F(b_j)=0$.对于固定的自然数$m,n$,我们有:
\begin{equation}\label{e2}\int_{[0,t_m]\setminus\bigcup_{j=1}^n(a_j,b_j)}F‘(x)dx=F(t_m)-F(0)-\sum_{j=1}^n(F(b_j)-F(a_j))=F(t_m)\geq
0.\end{equation}
由$F‘=|f|-1\in L^1[0,t_m]$以及控制收敛定理,对$\eqref{e2} $命$n\rightarrow\infty$,有
\begin{equation}\label{e3}\int_0^{t_m}\chi_{\{\int_0^x|f(t)|dt\geq
x\}}dx\leq\int_0^{t_m}|f(x)|\chi_{\{\int_0^x|f(t)|dt\geq
x\}}dx.\end{equation}
再令$m\rightarrow\infty$,由单调收敛定理,便得$\eqref{e1} $.下面来证明本题:
\begin{equation}\begin{split}\int_0^N\left[\frac{1}{x}\int_0^x|f(t)|dt\right]^pdx&=\int_0^N\int_0^{\frac{1}{x}\int_0^x|f(t)|dt}ps^{p-1}dsdx\\
&=\int_0^\infty ps^{p-1}ds\int_0^N\chi_{\{\frac{1}{x}\int_0^x|f(t)|dt\geq
s\}}dx\\&=\int_0^\infty
ps^{p-1}ds\int_0^N\chi_{\{\frac{1}{x}\int_0^x\frac{|f(t)|}{s}dt\geq 1\}}dx\\
&\leq \int_0^\infty
ps^{p-1}ds\int_0^N\frac{|f(x)|}{s}\chi_{\{\frac{1}{x}\int_0^x|f(t)|dt\geq
s\}}dx\\&=p\int_0^N|f(x)|dx\int_0^{\frac{1}{x}\int_0^x|f(t)|dt}s^{p-2}ds\\&=\frac{p}{p-1}\int_0^N|f(x)|\left[\frac{1}{x}\int_0^x|f(t)|dt\right]^{p-1}dx\\
&\leq\frac{p}{p-1}\left(\int_0^N|f(x)|^pdx\right)^{\frac{1}{p}}\left\{\int_0^N\left[\frac{1}{x}\int_0^x|f(t)|dt\right]^pdx\right\}^{\frac{p-1}{p}}.\end{split}\end{equation}
移项便得:
\begin{equation}\label{e5}\left\{\int_0^N\left[\frac{1}{x}\int_0^x|f(t)|dt\right]^pdx\right\}^{\frac{1}{p}}\leq\frac{p}{p-1}\left(\int_0^N|f(t)|^pdt\right)^{\frac{1}{p}}.\end{equation}
再命$N\rightarrow\infty$即得结论。
一道2010复旦大学数学分析竞赛试题,布布扣,bubuko.com
原文地址:http://www.cnblogs.com/schrodinger/p/3741218.html