标签:http ar io os 使用 sp for java on
在IT行业,碰到问题的第一个反应通常是——“你重启过没”——而这样做可能会适得其反,本文要讲述的就是这样的一个场景。
接下来要介绍的这个应用,它不仅不需要重启,而且毫不夸张地说,它能够自我治愈:刚开始运行的时候它可能会碰到些挫折,但会渐入佳境。为了能实际地展示出它的自愈能力,我们尽可能简单地重现了这一场景,这个灵感还得归功于五年前heinz Kabutz发表的一篇老文章:
package eu.plumbr.test; public class HealMe { private static final int SIZE = (int) (Runtime.getRuntime().maxMemory() * 0.6); public static void main(String[] args) throws Exception { for (int i = 0; i < 1000; i++) { allocateMemory(i); } } private static void allocateMemory(int i) { try { { byte[] bytes = new byte[SIZE]; System.out.println(bytes.length); } byte[] moreBytes = new byte[SIZE]; System.out.println(moreBytes.length); System.out.println("I allocated memory successfully " + i); } catch (OutOfMemoryError e) { System.out.println("I failed to allocate memory " + i); } } }
上述代码会循环地分配两块内存。每次分配的内存都是堆中总内存的60%。由于在同一个方法内会不停地进行这个内存分配,因此你可能会认为这段代码会 不断地抛出 java.lang.OutOfMemoryError: Java heap space异常,永远无法正常地执行完allocateMemory方法。
我们先来对源代码进行下静态分析,看看这种猜测是否恰当:
private static void allocateMemory(int); Code: 0: getstatic #3 // Field SIZE:I 3: newarray byte 5: astore_1 6: getstatic #4 // Field java/lang/System.out
java/io/PrintStream; 9: aload_1 10: arraylength 11: invokevirtual #5 // Method java/io/PrintStream.println
I)V 14: getstatic #3 // Field SIZE:I 17: newarray byte 19: astore_1 20: getstatic #4 // Field java/lang/System.out
java/io/PrintStream; 23: aload_1 24: arraylength 25: invokevirtual #5 // Method java/io/PrintStream.println
I)V ---- cut for brevity ----
从中能够看出,第一个数组是在位置3~5处完成分配的,并存储到了序号为1的本地变量中。随后在位置17处,正要分配另一个数组。不过由于第一个数 组仍被本地变量所引用着,因此第二次分配总会抛出OOM的异常而失败。字节码解释器不会允许GC去回收第一个数组,因为它仍然存在着一个强引用。
从静态代码分析中可看出,由于底层的两个约束,上述的代码是无法成功执行的,而在第一种情况下则是能够运行的。这三点分析里面哪个才是正确的呢?我 们来实际运行下看看结果吧。结果表明,这些结论都是正确的。首先,应用程序的确无法分配内存。但是,经过一段时间之后(在我的Mac OS X上使用Java 8大概是出现在第255次迭代中),内存分配开始能够成功执行了:
java -Xmx2g eu.plumbr.test.HealMe 1145359564 I failed to allocate memory 0 1145359564 I failed to allocate memory 1 … cut for brevity ... I failed to allocate memory 254 1145359564 I failed to allocate memory 255 1145359564 1145359564 I allocated memory successfully 256 1145359564 1145359564 I allocated memory successfully 257 1145359564 1145359564 Self-healing code is a reality! Skynet is near...
为了搞清楚究竟发生了什么,我们得思考一下,在程序运行期间发生了什么变化?显然,Just-In-Time编译开始介入了。如果你还记得的 话,JIT编译是JVM的一个内建机制,它可以优化热点代码。JIT会监控运行的代码,如果发现了一个热点,它会将你的字节码转化成本地代码,同时会执行 一些额外的优化,譬如方法内联以及无用代码擦除。
我们打开下面的命令行参数重启下程序,看看是否触发了JIT编译。
-XX:+UnlockDiagnosticVMOptions -XX:+PrintAssembly -XX:+LogCompilation
这会生成一个日志文件,在我这里是一个hotspot_pid38139.log文件,38139是Java进程的PID。在该文件中可以找到这么一行:
<task_queued compile_id=‘94‘ method=‘HealMe allocateMemory (I)V‘ bytes=‘83‘ count=‘256‘ iicount=‘256‘ level=‘3‘ stamp=‘112.305‘ comment=‘tiered‘ hot_count=‘256‘/>
这说明,在运行了256次allocateMemory()方法2之后,C1编译器决定将这个方法进行3级编译。看下这里可以了解下分层编译的各个级别以及不同的阈值。在前面的256次迭代中这段程序都是在解释模式下运行的,这里的字节码解释器就是一个简单堆栈机器,它无法提 前预知某个变量后续是否会被用到,在这里对应的是变量bytes。但是JIT会一次性查看整个方法,因此它能推断出后面不会再用到bytes变量,可以对 它进行GC。所以才会触发垃圾回收,因此我们的程序才能奇迹般地自愈。我只是希望本文的读者都不要在生产环境碰到调试这类问题的情况。不过如果你想让某人 抓狂的话,倒是可以试试在生产环境中加下类似的代码。
标签:http ar io os 使用 sp for java on
原文地址:http://www.cnblogs.com/guscode/p/4168744.html