
标签:dp


对于50%的数据,1≤N≤50。
第一道概率dp的题,首先要对每一个点bfs一下, 预处理出从i到j的最短路上,i下一步会走到的点p[i][j];
设dp[i][j]表示聪聪在i,可可在j时聪聪可以吃到可可平均要走的次数
如果p[i][j] == j || p[ p[i][j] ][j] == j,则dp[i][j] = 1,
如果i == j dp[i][j] = 0;
其他情况: 令u = p[ p[i][j] ][j]
dp[i][j] = ((dp[u][j] + 1)+ sigma(dp[u][k] (k与点j相连) + 1)) / (deg[j] + 1)
deg[j] 是点j的度数
#include <map>
#include <set>
#include <list>
#include <queue>
#include <stack>
#include <vector>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 1010;
int n, m;
int p[N][N];
int dist[N];
double dp[N][N];
int deg[N];
int head[N];
int tot;
struct node
{
int next;
int to;
}edge[N << 2];
void addedge(int from, int to)
{
edge[tot].to = to;
edge[tot].next = head[from];
head[from] = tot++;
}
void short_distance()
{
queue <int> qu;
for (int i = 1; i <= n; ++i)
{
while (!qu.empty())
{
qu.pop();
}
memset (dist, 0x3f3f3f3f, sizeof(dist));
dist[i] = 0;
qu.push(i);
p[i][i] = i;
while (!qu.empty())
{
int u = qu.front();
qu.pop();
for (int j = head[u]; ~j; j = edge[j].next)
{
int v = edge[j].to;
if (dist[v] > dist[u] + 1 ||(u < p[v][i] && dist[v] == dist[u] + 1))
{
p[v][i] = u;
dist[v] = dist[u] + 1;
qu.push(v);
}
}
}
}
}
double dfs(int i, int j)
{
if (i == j)
{
return dp[i][j] = 0;
}
if (p[i][j] == j || p[ p[i][j] ][j] == j)
{
return dp[i][j] = 1;
}
if (dp[i][j] != -1)
{
return dp[i][j];
}
double cur = 0;
int u = p[ p[i][j] ][j];
cur = dfs(u, j) + 1; //可可留在原地
for (int k = head[j]; ~k; k = edge[k].next)
{
cur += dfs(u, edge[k].to) + 1;
}
cur /= (deg[j] + 1);
return dp[i][j] = cur;
}
int main()
{
int s, e;
while (~scanf("%d%d", &n, &m))
{
scanf("%d%d", &s, &e);
int u, v;
memset (head, -1, sizeof(head));
memset (deg, 0, sizeof(deg));
tot = 0;
for (int i = 1; i <= m; ++i)
{
scanf("%d%d", &u, &v);
addedge(u, v);
addedge(v, u);
deg[u]++;
deg[v]++;
}
for (int i = 1; i <= n; ++i)
{
dp[i][i] = 0;
for (int j = 1; j <= n; ++j)
{
if (i == j)
{
continue;
}
dp[i][j] = -1;
}
}
short_distance();
dfs(s, e);
printf("%.3f\n", dp[s][e]);
}
return 0;
}标签:dp
原文地址:http://blog.csdn.net/guard_mine/article/details/42009751