标签:blog http ar io os sp for on 2014
题目链接:点击打开链接
题意:给一个数n,问这个数是不是Carmichael Numbers,Carmichael Numbers的定义为:一个数n如果不是素数且对于对于任意的 2=<a<n 都满足 a^n%n=a,那么这个数就是Carmichael Numbers,否则不是。快速幂暴力解决。
#include <algorithm> #include <iostream> #include <cstring> #include <cstdlib> #include <string> #include <cctype> #include <vector> #include <cstdio> #include <cmath> #include <queue> #include <stack> #include <map> #include <set> #define maxn 65002 #define _ll __int64 #define ll long long #define INF 0x3f3f3f3f #define Mod 10000007 #define pp pair<int,int> #define ull unsigned long long using namespace std; ll n; bool pri[maxn]; void init() { memset(pri, 1, sizeof(pri)); pri[0] = 0; pri[1] = 0; for (int i = 2; i * i <= maxn; i++) { if (pri[i]) { for (int j = i * i; j <= maxn; j += i) { pri[j] = 0; } } } } ll pow_mod(ll a, ll n, ll p) { if (n == 0) { return 1; } ll ans = pow_mod(a, n / 2, p); ans = ans * ans % p; if (n & 1) { ans = ans * a % p; } return ans; } void solve() { if (pri[n]) { printf("%d is normal.\n", n); return ; } for (ll i = 2; i < n; i++) { if (pow_mod(i, n, n) != i) { printf("%d is normal.\n", n); return ; } } printf("The number %d is a Carmichael number.\n", n); } int main() { init(); while (~scanf("%lld", &n) && n) { solve(); } return 0; }
Uva 10006-Carmichael Numbers(快速幂)
标签:blog http ar io os sp for on 2014
原文地址:http://blog.csdn.net/qq_16255321/article/details/42009187