The set [1,2,3,…,n]
contains a total of n! unique
permutations.
By listing and labeling all of the permutations in order,
We get the following sequence (ie, for n = 3):
"123"
"132"
"213"
"231"
"312"
"321"
Given n and k, return the kth permutation sequence.
Note: Given n will be between 1 and 9 inclusive.
public class Solution { int f[]; public String getPermutation(int n, int k) { f = new int[n+1]; if(k>factorial(n)) return "-1"; List<Integer> list = new ArrayList<Integer>(); for(int i=1;i<=n;i++){ list.add(i); } StringBuilder sb = new StringBuilder(); k--; while(list.size()>0){ int mul = factorial(n-1); int index = k/mul; sb.append(list.get(index)); list.remove(index); k = k%mul; n--; } return sb.toString(); } private int factorial(int num){ if(num == 0) return f[0]=1; if(f[num]>0){ return f[num]; }else{ return f[num]=factorial(num-1)*num; } } }
[leetCode]Permutation Sequence
原文地址:http://blog.csdn.net/guorudi/article/details/42043461