标签:
在这篇文章里,我们一起学习了在OpenCV中如何定义感兴趣区域ROI,如何使用addWeighted函数进行图像混合操作,以及将ROI和addWeighted函数结合起来使用,对指定区域进行图像混合操作。
一、设定感兴趣区域——ROI(region of interest)
在图像处理领域,我们常常需要设置感兴趣区域(ROI,region of interest),来专注或者简化我们的工作过程 。也就是从图像中选择的一个图像区域,这个区域是我们图像分析所关注的重点。我们圈定这个区域,以便进行进一步处理。而且,使用ROI指定我们想读入的目标,可以减少处理时间,增加精度,给图像处理来带不小的便利。
ROI区域定义的两种方法
定义ROI区域有两种方法,第一种是使用cv:Rect.顾名思义,cv::Rect表示一个矩形区域。指定矩形的左上角坐标(构造函数的前两个参数)和矩形的长宽(构造函数的后两个参数)就可以定义一个矩形区域。
- Mat imageROI;
- imageROI=image(Rect(500,250,logo.cols,logo.rows));
另一种定义ROI的方式是指定感兴趣行或列的范围(Range)。Range是指从起始索引到终止索引(不包括终止索引)的一连段连续序列。cv::Range可以用来定义Range。如果使用cv::Range来定义ROI,那么前例中定义ROI的代码可以重写为:
- imageROI=srcImage3(Range(250,250+logoImage.rows),Range(200,200+logoImage.cols));
好了,下面我们来看一个实例,显示如何利用ROI将一幅图加到另一幅图的指定位置。大家如果需要拷贝如下的函数中的代码直接运行的话,自己建一个基于console的程序,然后把函数体中的内容拷贝到main函数中,然后找两幅大小合适的图片,加入到工程目录下,并和代码中读取的文件名一致即可。
在下面的代码中,我们通过一个图像掩膜(mask),直接将插入处的像素设置为logo图像的像素值,这样效果会很赞很逼真:
- bool ROI_AddImage()
- {
-
-
- Mat srcImage1= imread("dota_pa.jpg");
- Mat logoImage= imread("dota_logo.jpg");
- if(!srcImage1.data ) { printf("你妹,读取srcImage1错误~! \n"); return false; }
- if(!logoImage.data ) { printf("你妹,读取logoImage错误~! \n"); return false; }
-
-
- Mat imageROI= srcImage1(Rect(200,250,logoImage.cols,logoImage.rows));
-
-
- Mat mask= imread("dota_logo.jpg",0);
-
-
- logoImage.copyTo(imageROI,mask);
-
-
- namedWindow("<1>利用ROI实现图像叠加示例窗口");
- imshow("<1>利用ROI实现图像叠加示例窗口",srcImage1);
-
- return true;
- }
这个函数首先是载入了两张jpg图片到srcImage1和logoImage中,然后定义了一个Mat类型的imageROI,并使用cv::Rect设置其感兴趣区域为srcImage1中的一块区域,将imageROI和srcImage1关联起来。接着定义了一个Mat类型的的mask并读入dota_logo.jpg,顺势使用Mat:: copyTo把mask中的内容拷贝到imageROI中,于是就得到了最终的效果图,namedWindow和imshow配合使用,显示出最终的结果。
运行结果如下:
这里白色的dota2 logo,就是通过操作之后加上去的图像。
二、初级图像混合——线性混合操作
线性混合操作是一种典型的二元(两个输入)的像素操作,它的理论公式是这样的:
如果看过我之前写的游戏编程Alpha混合那篇文章的朋友们应该有些熟悉,其实他们是差不多的: 【Visual C++】游戏开发五十五浅墨 DirectX教程二十二水乳交融的美学:alpha混合技术
我们通过在范围0到1之间改变alpha值,来对两幅图像(f0(x)和f1(x))或两段视频(同样为(f0(x)和f1(x))产生时间上的画面叠化(cross-dissolve)效果,就像幻灯片放映和电影制作中的那样。即在幻灯片翻页时设置的前后页缓慢过渡叠加效果,以及电影情节过渡时经常出现的画面叠加效果。
实现方面,我们主要运用了OpenCV中addWeighted函数,我们来全面的了解一下它:
addWeighted函数
这个函数的作用是,计算两个数组(图像阵列)的加权和。原型如下:
- void addWeighted(InputArray src1, double alpha, InputArray src2, double beta, double gamma, OutputArray dst, int dtype=-1);
- 第一个参数,InputArray类型的src1,表示需要加权的第一个数组,常常填一个Mat。
- 第二个参数,alpha,表示第一个数组的权重
- 第三个参数,src2,表示第二个数组,它需要和第一个数组拥有相同的尺寸和通道数。
- 第四个参数,beta,表示第二个数组的权重值。
- 第五个参数,dst,输出的数组,它和输入的两个数组拥有相同的尺寸和通道数。
- 第六个参数,gamma,一个加到权重总和上的标量值。看下面的式子自然会理解。
- 第七个参数,dtype,输出阵列的可选深度,有默认值-1。;当两个输入数组具有相同的深度时,这个参数设置为-1(默认值),即等同于src1.depth()。
如果用数学公式来表达,addWeighted函数计算如下两个数组(src1和src2)的加权和,得到结果输出给第四个参数。即addWeighted函数的作用可以被表示为为如下的矩阵表达式为:
dst = src1[I]*alpha+ src2[I]*beta + gamma;
其中的I,是多维数组元素的索引值。而且,在遇到多通道数组的时候,每个通道都需要独立地进行处理。另外需要注意的是,当输出数组的深度为CV_32S时,这个函数就不适用了,这时候就会内存溢出或者算出的结果压根不对。
理论和函数的讲解就是上面这些,接着我们来看代码实例,以融会贯通。
- bool LinearBlending()
- {
-
- double alphaValue = 0.5;
- double betaValue;
- Mat srcImage2, srcImage3, dstImage;
-
-
- srcImage2= imread("mogu.jpg");
- srcImage3= imread("rain.jpg");
-
- if(!srcImage2.data ) { printf("你妹,读取srcImage2错误~! \n"); return false; }
- if(!srcImage3.data ) { printf("你妹,读取srcImage3错误~! \n"); return false; }
-
-
- betaValue= ( 1.0 - alphaValue );
- addWeighted(srcImage2, alphaValue, srcImage3, betaValue, 0.0, dstImage);
-
-
- namedWindow("<2>线性混合示例窗口【原图】 by浅墨", 1);
- imshow("<2>线性混合示例窗口【原图】 by浅墨", srcImage2 );
-
- namedWindow("<3>线性混合示例窗口【效果图】 by浅墨", 1);
- imshow("<3>线性混合示例窗口【效果图】 by浅墨", dstImage );
-
- return true;
-
- }
代码解析:
<0>首先当然是定义一些局部变量,alpha值beta值,三个Mat类型的变量。
- double alphaValue = 0.5;
- double betaValue;
- Mat srcImage2, srcImage3, dstImage;
在这里我们设置alpha值为0.5。
<1>读取两幅图像并作错误处理
这步很简单,直接上代码:
- srcImage2= imread("mogu.jpg");
- srcImage3= imread("rain.jpg");
- if(!srcImage2.data ) { printf("你妹,读取srcImage2错误~! \n"); return false; }
- if(!srcImage3.data ) { printf("你妹,读取srcImage3错误~! \n"); return false; }
在这里需要注意的是,因为我们是对 srcImage1和srcImage2求和,所以它们必须要有相同的尺寸(宽度和高度)和类型,不然多余的部分没有对应的“伴”,肯定会出问题。
<2> 进行图像混合加权操作
载入图像后,我们就可以来生成混合图像,也就是之前公式中的g(x)。为此目的,使用函数 addWeighted 可以很方便地实现,也就是因为 addWeighted 进行了如下计算:
这里的对应于addWeighted的第2个参数alpha
这里的对应于addWeighted的第4个参数beta
这里的对应于addWeighted的第5个参数,在上面代码中被我们设为0.0。
代码其实很简单,就是这样:
- betaValue = ( 1.0 - alphaValue );
- addWeighted( srcImage2, alphaValue, srcImage3,betaValue, 0.0, dstImage);
- 其中beta值为1-alpha,gamma值为0。
<3>创建显示窗口,显示图像。
- namedWindow("<2>线性混合示例窗口【原图】 by浅墨", 1);
- imshow("<2>线性混合示例窗口【原图】 by浅墨", srcImage2 );
-
- namedWindow("<3>线性混合示例窗口【效果图】 by浅墨", 1);
- imshow("<3>线性混合示例窗口【效果图】 by浅墨", dstImage );
接着来看一下运行效果图,首先是原图:
然后是效果图:
三、综合示例
在前面分别介绍的设定感兴趣区域ROI和使用addWeighted函数进行图像线性混合的基础上,我们还将他们两者中和起来使用,也就是先指定ROI,并用addWeighted函数对我们指定的ROI区域的图像进行混合操作,我们将其封装在了一个名为ROI_LinearBlending的函数中,方便大家分块学习。
- bool ROI_LinearBlending()
- {
-
-
- Mat srcImage4= imread("dota_pa.jpg",1);
- Mat logoImage= imread("dota_logo.jpg");
-
- if(!srcImage4.data ) { printf("你妹,读取srcImage4错误~! \n"); return false; }
- if(!logoImage.data ) { printf("你妹,读取logoImage错误~! \n"); return false; }
-
-
- Mat imageROI;
-
- imageROI=srcImage4(Rect(200,250,logoImage.cols,logoImage.rows));
-
-
-
-
- addWeighted(imageROI,0.5,logoImage,0.3,0.,imageROI);
-
-
- namedWindow("<4>区域线性图像混合示例窗口 by浅墨");
- imshow("<4>区域线性图像混合示例窗口 by浅墨",srcImage4);
-
- return true;
- }
从这篇文章开始,如果不出意外的话,为了方便大家分块各个击破学习,每讲一个部分,示例代码都将封装在一个函数中,免得大家像学习各种不是特别地道的OpenCV教程时一样,看到代码全放在main函数中,心都碎了。
好了,下面放出详细注释的本篇文章的全部示例源代码:
-
- #include <cv.h>
- #include <highgui.h>
- #include <iostream>
-
- using namespace cv;
- using namespace std;
-
-
- bool ROI_AddImage();
- bool LinearBlending();
- bool ROI_LinearBlending();
-
- int main( )
- {
- system("color 5E");
-
- if(ROI_AddImage()&& LinearBlending( )&&ROI_LinearBlending( ))
- {
- cout<<endl<<"嗯。好了,得出了你需要的图像~! : )";
- }
-
- waitKey(0);
- return 0;
- }
-
- bool ROI_AddImage()
- {
-
-
- Mat srcImage1= imread("dota_pa.jpg");
- Mat logoImage= imread("dota_logo.jpg");
- if(!srcImage1.data ) { printf("你妹,读取srcImage1错误~! \n"); return false; }
- if(!logoImage.data ) { printf("你妹,读取logoImage错误~! \n"); return false; }
-
-
- Mat imageROI= srcImage1(Rect(200,250,logoImage.cols,logoImage.rows));
-
-
- Mat mask= imread("dota_logo.jpg",0);
-
-
- logoImage.copyTo(imageROI,mask);
-
-
- namedWindow("<1>利用ROI实现图像叠加示例窗口");
- imshow("<1>利用ROI实现图像叠加示例窗口",srcImage1);
-
- return true;
- }
-
-
- bool LinearBlending()
- {
-
- double alphaValue = 0.5;
- double betaValue;
- Mat srcImage2, srcImage3, dstImage;
-
-
- srcImage2= imread("mogu.jpg");
- srcImage3= imread("rain.jpg");
-
- if(!srcImage2.data ) { printf("你妹,读取srcImage2错误~! \n"); return false; }
- if(!srcImage3.data ) { printf("你妹,读取srcImage3错误~! \n"); return false; }
-
-
- betaValue= ( 1.0 - alphaValue );
- addWeighted(srcImage2, alphaValue, srcImage3, betaValue, 0.0, dstImage);
-
-
- namedWindow("<2>线性混合示例窗口【原图】 by浅墨", 1);
- imshow("<2>线性混合示例窗口【原图】 by浅墨", srcImage2 );
-
- namedWindow("<3>线性混合示例窗口【效果图】 by浅墨", 1);
- imshow("<3>线性混合示例窗口【效果图】 by浅墨", dstImage );
-
- return true;
-
- }
-
- bool ROI_LinearBlending()
- {
-
-
- Mat srcImage4= imread("dota_pa.jpg",1);
- Mat logoImage= imread("dota_logo.jpg");
-
- if(!srcImage4.data ) { printf("你妹,读取srcImage4错误~! \n"); return false; }
- if(!logoImage.data ) { printf("你妹,读取logoImage错误~! \n"); return false; }
-
-
- Mat imageROI;
-
- imageROI=srcImage4(Rect(200,250,logoImage.cols,logoImage.rows));
-
-
-
-
- addWeighted(imageROI,0.5,logoImage,0.3,0.,imageROI);
-
-
- namedWindow("<4>区域线性图像混合示例窗口 by浅墨");
- imshow("<4>区域线性图像混合示例窗口 by浅墨",srcImage4);
-
- return true;
- }
最后看一下整体的运行效果图。
首先是经过背景颜色修改的console窗口:
然后依次是四张效果图:
【OpenCV入门教程之四】 ROI区域图像叠加&初级图像混合 全剖析
标签:
原文地址:http://www.cnblogs.com/shiddong/p/4175829.html