码迷,mamicode.com
首页 > 其他好文 > 详细

【LeetCode】4Sum

时间:2014-12-21 11:28:24      阅读:178      评论:0      收藏:0      [点我收藏+]

标签:

4Sum

Given an array S of n integers, are there elements abc, and d in S such that a + b + c + d = target? Find all unique quadruplets in the array which gives the sum of target.

Note:

  • Elements in a quadruplet (a,b,c,d) must be in non-descending order. (ie, a ≤ b ≤ c ≤ d)
  • The solution set must not contain duplicate quadruplets.

 

    For example, given array S = {1 0 -1 0 -2 2}, and target = 0.

    A solution set is:
    (-1,  0, 0, 1)
    (-2, -1, 1, 2)
    (-2,  0, 0, 2)

 

先确定前两个数num[i],num[j],

然后设置双指针k,l分别指向两端,往中间扫。

(1)(sum = num[i]+num[j]+num[k]+num[l]) == taget,则找到其中一个解(注意用map去重)。k++,l--.

(2)sum > target, l--

(3)sum < target, k++

 

class Solution {
public:
    vector<vector<int> > fourSum(vector<int> &num, int target) {
        vector<vector<int> > result;
        if(num.empty() || num.size() < 4)
            return result;
        int size = num.size();
        sort(num.begin(), num.end());
        map<vector<int>, bool> m;
        for(int i = 0; i < size-3; i ++)
        {
            for(int j = i+1; j < size-2; j ++)
            {
                int k = j+1;    //k < size-1
                int l = size-1;
                while(k < l)
                {
                    int sum = num[i]+num[j]+num[k]+num[l];
                    if(sum == target)
                    {
                        vector<int> cur(4,0);
                        cur[0] = num[i];
                        cur[1] = num[j];
                        cur[2] = num[k];
                        cur[3] = num[l];
                        if(m.find(cur) == m.end())
                        {
                            result.push_back(cur);
                            m[cur] = true;
                        }
                        k ++;
                        l --;
                    }
                    else if(sum > target)
                        l --;
                    else
                        k ++;
                }
            }
        }
        return result;
    }
};

技术分享

【LeetCode】4Sum

标签:

原文地址:http://www.cnblogs.com/ganganloveu/p/4176281.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!