标签:
到今天,行列式和线性方程组部分就完成了。
using System; using System.Collections.Generic; using System.Linq; using System.Text; namespace MyMathLib { /// <summary> /// 行列式计算,本程序属于MyMathLib的一部分,欢迎使用,参考,提意见。 /// 有时间用函数语言改写,做自己得MathLib,里面的算法经过验证,但没经过 /// 严格测试,如需参考,请慎重. /// </summary> public static partial class LinearAlgebra {#region 线性方程组 /// <summary> /// 根据拉普拉斯定理计算行列式值。 /// </summary> /// <param name="Determinants">N阶行列式</param> /// <returns>计算结果</returns> public static decimal CalcDeterByLaplaceLaw(decimal[,] Determinants) { var n = Determinants.GetLength(0); //如果阶数小于3,则没必要采用拉普拉斯展开 if (n <= 3) { return CalcDeterminantAij(Determinants, false); } var theRows = GetLaplaceRowsOdd(n); return CalcDeterByLaplaceLaw(Determinants, theRows); } /// <summary> /// 求解线性方程组,这里要求N /// </summary> /// <param name="CoefficientDeterminant">线性方程组系数行列式</param> /// <param name="ConstantTerms">常数项</param> /// <returns></returns> public static decimal[] LinearEquations(int UnknownElements,decimal[,] CoefficientDeterminant, decimal[] ConstantTerms) { var theRowCount = CoefficientDeterminant.GetLength(0); var theColCount = CoefficientDeterminant.GetLength(1); if (UnknownElements == theRowCount && theColCount == UnknownElements) { var theD = CalcDeterByLaplaceLaw(CoefficientDeterminant); if(theD==0) { return null; } decimal[] theResults = new decimal[UnknownElements]; for (int i = 1; i <= UnknownElements; i++) { //置换第i列,注意保存原来的值,下次计算时恢复 var theTemp = new decimal[UnknownElements]; for (int j = 1; j <= UnknownElements; j++) { theTemp[j-1] = CoefficientDeterminant[j-1, i-1]; CoefficientDeterminant[j - 1, i - 1] = ConstantTerms[j - 1]; } var theDi = CalcDeterByLaplaceLaw(CoefficientDeterminant) / theD; theResults[i-1] = theDi; //复原系数行列式. for (int j = 1; j <= UnknownElements; j++) { CoefficientDeterminant[j - 1, i - 1] = theTemp[j - 1]; } } return theResults; } else { throw new Exception("参数格式不正确!"); } } /// <summary> /// 求解线性方程组(消元法),这里与化三角求行列式的方法类似,这里要求方程个数和元个数相同。 /// 如果方程个数小于元的个数,消元没问题,但涉及到一般解,会牵扯到符号运算,这里暂不考虑. /// </summary> /// <param name="CoefficientDeterminant">线性方程组系数行列式,最右边N+1列是常数项</param> /// <returns></returns> public static decimal[] LinearEquationsEM(int UnknownElements,decimal[,] CoefficientDeterminant) { var theRowCount = CoefficientDeterminant.GetLength(0); var theColCount = CoefficientDeterminant.GetLength(1); if (UnknownElements == theRowCount && theColCount == UnknownElements + 1) { decimal[] theResults = new decimal[UnknownElements]; int theN = UnknownElements; //从第1列到第theN-1列 for (int i = 0; i < theN - 1; i++) { //从第theN-1行到第i+1行,将D[j,i]依次变为0 for (int j = theN - 1; j > i; j--) { //如果为当前值为0,则不处理,继续处理上一行 if (CoefficientDeterminant[j, i] == 0) { continue; } //如果[j,i]的上一行[j-1, i]的值为0则交换 if (CoefficientDeterminant[j - 1, i] == 0) { for (int k = 0; k <= theN; k++)//这里要交换常数项,所以是k <= theN { decimal theTmpDec = CoefficientDeterminant[j, k]; CoefficientDeterminant[j, k] = CoefficientDeterminant[j - 1, k]; CoefficientDeterminant[j - 1, k] = theTmpDec; } } else { //将当前行减去上一行与theRate的积。 var theRate = CoefficientDeterminant[j, i] / CoefficientDeterminant[j - 1, i]; for (int k = 0; k <= theN; k++)//这里要计算常数项,所以是k <= theN { CoefficientDeterminant[j, k] = CoefficientDeterminant[j, k] - CoefficientDeterminant[j - 1, k] * theRate; } } } } //处理结果 if (CoefficientDeterminant[UnknownElements - 1, UnknownElements - 1] == 0) { if (CoefficientDeterminant[UnknownElements - 1, UnknownElements] == 0) { throw new Exception("无效方程,有无穷个解!"); } else { throw new Exception("方程无解!"); } } //结果处理,回代 for (int i = UnknownElements - 1; i >= 0; i--) { //计算已求项 decimal theTempDec = 0; for (int j = i + 1; j < theN; j++) { theTempDec += CoefficientDeterminant[i, j] * theResults[j]; } //计算结果,如果系数为0,则为无效方程 if (CoefficientDeterminant[i, i] == 0) { throw new Exception("无效方程"); } theResults[i] = (CoefficientDeterminant[i, UnknownElements] - theTempDec) / CoefficientDeterminant[i, i]; } return theResults; } else { throw new Exception("参数格式不正确!"); } } #endregion } }
标签:
原文地址:http://blog.csdn.net/hawksoft/article/details/42065783