码迷,mamicode.com
首页 > 其他好文 > 详细

UVa 1638 (递推) Pole Arrangement

时间:2014-12-22 19:35:05      阅读:193      评论:0      收藏:0      [点我收藏+]

标签:

很遗憾,这么好的一道题,自己没想出来,也许太心急了吧。

题意:

有长度为1、2、3...n的n个杆子排成一行。问从左到右看能看到l个杆子,从右往左看能看到r个杆子,有多少种排列方法。

分析:

设状态d(i, j, k)表示i(i≥2)个长度各不相同的杆子,从左往右看能看到j个杆子,从右往左看能看到k个杆子的排列方法。现在假设除了最短的那个杆子,其他i-1个杆子的位置都已排好。那么考虑最短的杆子的位置,有三种决策:

  • 将最短的放到最左边,这样左视图中看到的杆子数加一,右视图不变。
  • 将最短的放到最右边,这样右视图中看到的杆子数加一,左视图不变。
  • 将最短的放在中间,这样从左侧或者从右侧都不会被看到,共有i-2中放法。

因此状态转移方程为:d(i, j, k) = d(i-1, j-1, k) + d(i-1, j, k-1) + (i-2)*d(i-1, j, k) //分别对应三种决策

技术分享
 1 #include <cstdio>
 2 typedef long long LL;
 3 const int maxn = 20;
 4 LL f[22][22][22];
 5 
 6 void Init()
 7 {
 8     f[1][1][1] = 1;
 9     for(int i = 2; i <= maxn; ++i)
10         for(int j = 1; j <= i; ++j)
11             for(int k = 1; j + k - 1 <= i; ++k)
12                 f[i][j][k] = f[i-1][j-1][k] + f[i-1][j][k-1] + (i-2)*f[i-1][j][k];
13 }
14 
15 int main()
16 {
17     Init();
18     int T;
19     scanf("%d", &T);
20     while(T--)
21     {
22         int n, l, r;
23         scanf("%d%d%d", &n, &l, &r);
24         printf("%lld\n", f[n][l][r]);
25     }
26 
27     return 0;
28 }
代码君

 

UVa 1638 (递推) Pole Arrangement

标签:

原文地址:http://www.cnblogs.com/AOQNRMGYXLMV/p/4178755.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!