标签:c++
智能指针通常使用类模板来实现。模拟类指针的各种行为。但是,其最重要的作用是对类指针成员的管理,防止悬垂指针的出现。
template<class T> class SmartPointer{ public: SmartPointer(T *t):pt(t){} T& operator *(){ return *pt; } T* operator ->() { return pt; } private: T *pt; };
为了实现引用计数,我们定义一个_counter类来记录引用次数,把_counter类的所有成员设定为private,因为其他的类型并不需要访问_counter,只有SmartPointer对其进行操作就行了,SmartPointer将设为其友元类。
class _counter{ template<class T> friend class SmartPointer; _counter(int u):use(u){} ~_counter(){} int use; };
在SmartPointer类中,保留_counter的指针。
template<class T> class SmartPointer{ public: SmartPointer(T *t):pc(new _counter(1)){ cout<<"SmartPointer::SmartPointer() invoded use is: "<<pc->use<<endl; this->pt = t; } SmartPointer(SmartPointer<T> &rhs){ this->pc = rhs.pc; this->pt = rhs.pt; this->pc->use++; cout<<"SmartPointer copy invoked use is: "<<pc->use<<endl; } ~SmartPointer(){ pc->use--; cout<<"SmartPointer::~SmartPointer() invoded use is: "<<pc->use<<endl; if(pc->use == 0) { delete pt; delete pc; } } SmartPointer<T>& operator=(SmartPointer<T> rhs){ if(rhs == *this){ return *this; }
if
(--pc->use==0){
delete
pt;
delete
pc;
this->pt = rhs.pt; this->pc = rhs.pc; this->pc->use++; cout<<"SmartPointer::operator=() invoked use is: "<<pc->use<<endl; return *this; } private: T *pt; _counter* pc; };
}
例如:我们有一个HasPtr类,其类成员中有一个为指针*p。
class HasPtr{ public: HasPtr(int val):value(val),p(new int(3)){ cout<<"HasPtr::HasPtr() invoked"<<endl; } ~HasPtr(){ delete p; cout<<"HasPtr::~HasPtr() invoded"<<endl;} private: int *p; int value; };
如果如下调用:
HasPtr *php = new HasPtr(3); SmartPointer<HasPtr> psp(php); SmartPointer<HasPtr> npsp(psp);
我们现在有两个智能指针对象,指向同一个HasPtr对象,其模型如下:
_counter的use成员(引用计数)为2.
int main(void) { HasPtr *php = new HasPtr(3); SmartPointer<HasPtr> psp(php); SmartPointer<HasPtr> npsp(psp); SmartPointer<HasPtr> nnpsp = npsp; return 0; }
使用gcc编译器,运行结果如下:
再找一份实现:
#include <iostream> #include <windows.h> using namespace std; #define SAFE_DELETE(p) if (p) { delete p; p = NULL; } class KRefCount { public: KRefCount():m_nCount(0){} public: unsigned AddRef(){ return InterlockedIncrement(&m_nCount); } unsigned Release(){ return InterlockedDecrement(&m_nCount); } void Reset(){ m_nCount = 0; } private: unsigned long m_nCount; }; template <typename T> class SmartPtr { public: SmartPtr(void) : m_pData(NULL) { m_pReference = new KRefCount(); m_pReference->AddRef(); } SmartPtr(T* pValue) : m_pData(pValue) { m_pReference = new KRefCount(); m_pReference->AddRef(); } SmartPtr(const SmartPtr<T>& sp) : m_pData(sp.m_pData) , m_pReference(sp.m_pReference) { m_pReference->AddRef(); } ~SmartPtr(void) { if (m_pReference && m_pReference->Release() == 0) { SAFE_DELETE(m_pData); SAFE_DELETE(m_pReference); } } inline T& operator*() { return *m_pData; } inline T* operator->() { return m_pData; } SmartPtr<T>& operator=(const SmartPtr<T>& sp) { if (this != &sp) { if (m_pReference && m_pReference->Release() == 0) { SAFE_DELETE(m_pData); SAFE_DELETE(m_pReference); } m_pData = sp.m_pData; m_pReference = sp.m_pReference; m_pReference->AddRef(); } return *this; } SmartPtr<T>& operator=(T* pValue) { if (m_pReference && m_pReference->Release() == 0) { SAFE_DELETE(m_pData); SAFE_DELETE(m_pReference); } m_pData = pValue; m_pReference = new KRefCount; m_pReference->AddRef(); return *this; } T* Get() { T* ptr = NULL; ptr = m_pData; return ptr; } void Attach(T* pObject) { if (m_pReference->Release() == 0) { SAFE_DELETE(m_pData); SAFE_DELETE(m_pReference); } m_pData = pObject; m_pReference = new KRefCount; m_pReference->AddRef(); } T* Detach() { T* ptr = NULL; if (m_pData) { ptr = m_pData; m_pData = NULL; m_pReference->Reset(); } return ptr; } private: KRefCount* m_pReference; T* m_pData; }; class CTest { public: CTest(int b) : a(b) {} private: int a; }; int main() { SmartPtr<CTest> pSmartPtr1(new CTest(10)); SmartPtr<CTest> pSmartPtr2(new CTest(20)); pSmartPtr1 = pSmartPtr2; }
标签:c++
原文地址:http://blog.csdn.net/yusiguyuan/article/details/42131183