标签:
Description
Input
Output
Sample Input
5 6 1 2 3 4 5 Q 1 5 U 3 6 Q 3 4 Q 4 5 U 2 9 Q 1 5
Sample Output
5 6 5 9
题目大意:中文题目,不解释。
解题思路:用线段树储存学生成绩。注意,建树过程中,父节点值为子节点中的最大值;修改过程中,要更新整棵线段树;查找过程要注意边界。
#include<stdio.h> #include<algorithm> #include<math.h> #include<string.h> using namespace std; #define NUM 200000 int N, M; int S[4 * NUM], V[4 * NUM], R[4 * NUM], L[4* NUM]; void build(int n, int l, int r) { //建线段树 if (l == r) { R[n] = l; L[n] = l; S[n] = V[l - 1]; return ; } else { int temp = (l + r) / 2; R[2 * n + 1] = temp; R[2 * n + 2] = r; L[2 * n + 1] = l; L[2 * n + 2] = temp + 1; build(2 * n + 1, L[2 * n + 1] , R[2 * n + 1]); build(2 * n + 2, L[2 * n + 2], R[2 * n + 2]); S[n] = max(S[2 * n + 1], S[2 * n + 2]); } return ; } void modify(int n, int x, int v) { //将X改为V if (L[n] == x && R[n] == x) { S[n] = v; return; } int mid = (L[n] + R[n]) / 2; if (x <= mid) { modify(n * 2 + 1, x, v); } else { modify(n * 2 + 2, x, v); } S[n] = max(S[n * 2 + 1], S[n * 2 + 2]); } int cnt; int find(int n, int l, int r) { //查找区间l到r的最大值 if (l <= L[n] && r >= R[n]) { return S[n]; } int mid = (L[n] + R[n]) / 2; int min = -1; if (l <= mid) { min = max(min, find(n * 2 + 1, l, r)); } if (r > mid) { min = max(min, find(n * 2 + 2, l, r)); } return min; } int main() { while (scanf("%d %d\n", &N, & M) != EOF) { memset(S, 0, sizeof(S)); memset(V, 0, sizeof(V)); memset(R, 0, sizeof(R)); memset(L, 0, sizeof(L)); int cnt = 0; for (int i = 0; i < N; i++) { scanf("%d ", &V[cnt++]); } L[0] = 1; R[0] = cnt; build(0, L[0], R[0]); char ch; for (int i = 0; i < M; i++) { scanf("%c ", &ch); if (ch == 'Q') { int a, b; scanf("%d %d\n", &a, &b); printf("%d\n", find(0, a, b)); } else if (ch == 'U') { int a, b; scanf("%d %d\n", &a, &b); modify(0, a, b); } } } return 0; }
标签:
原文地址:http://blog.csdn.net/llx523113241/article/details/42215845