标签:
Description
Input
Output
Sample Input
5 6 1 2 3 4 5 Q 1 5 U 3 6 Q 3 4 Q 4 5 U 2 9 Q 1 5
Sample Output
5 6 5 9
题目大意:中文题目,不解释。
解题思路:用线段树储存学生成绩。注意,建树过程中,父节点值为子节点中的最大值;修改过程中,要更新整棵线段树;查找过程要注意边界。
#include<stdio.h>
#include<algorithm>
#include<math.h>
#include<string.h>
using namespace std;
#define NUM 200000
int N, M;
int S[4 * NUM], V[4 * NUM], R[4 * NUM], L[4* NUM];
void build(int n, int l, int r) { //建线段树
if (l == r) {
R[n] = l;
L[n] = l;
S[n] = V[l - 1];
return ;
}
else {
int temp = (l + r) / 2;
R[2 * n + 1] = temp;
R[2 * n + 2] = r;
L[2 * n + 1] = l;
L[2 * n + 2] = temp + 1;
build(2 * n + 1, L[2 * n + 1] , R[2 * n + 1]);
build(2 * n + 2, L[2 * n + 2], R[2 * n + 2]);
S[n] = max(S[2 * n + 1], S[2 * n + 2]);
}
return ;
}
void modify(int n, int x, int v) { //将X改为V
if (L[n] == x && R[n] == x) {
S[n] = v;
return;
}
int mid = (L[n] + R[n]) / 2;
if (x <= mid) {
modify(n * 2 + 1, x, v);
}
else {
modify(n * 2 + 2, x, v);
}
S[n] = max(S[n * 2 + 1], S[n * 2 + 2]);
}
int cnt;
int find(int n, int l, int r) { //查找区间l到r的最大值
if (l <= L[n] && r >= R[n]) {
return S[n];
}
int mid = (L[n] + R[n]) / 2;
int min = -1;
if (l <= mid) {
min = max(min, find(n * 2 + 1, l, r));
}
if (r > mid) {
min = max(min, find(n * 2 + 2, l, r));
}
return min;
}
int main() {
while (scanf("%d %d\n", &N, & M) != EOF) {
memset(S, 0, sizeof(S));
memset(V, 0, sizeof(V));
memset(R, 0, sizeof(R));
memset(L, 0, sizeof(L));
int cnt = 0;
for (int i = 0; i < N; i++) {
scanf("%d ", &V[cnt++]);
}
L[0] = 1;
R[0] = cnt;
build(0, L[0], R[0]);
char ch;
for (int i = 0; i < M; i++) {
scanf("%c ", &ch);
if (ch == 'Q') {
int a, b;
scanf("%d %d\n", &a, &b);
printf("%d\n", find(0, a, b));
}
else if (ch == 'U') {
int a, b;
scanf("%d %d\n", &a, &b);
modify(0, a, b);
}
}
}
return 0;
}
标签:
原文地址:http://blog.csdn.net/llx523113241/article/details/42215845