码迷,mamicode.com
首页 > 其他好文 > 详细

最大子序列和问题

时间:2014-12-29 10:27:50      阅读:137      评论:0      收藏:0      [点我收藏+]

标签:acm   最大子序列和   

最大子序列和问题: 链接:    click here

问题描述:

    输入一组整数,求出这组数字子序列和中最大值。也就是只要求出最大子序列的和,不必求出最大的那个序列。例如:

序列:-2 11 -4 13 -5 -2,则最大子序列和为20。

序列:-6 2 4 -7 5 3 2 -1 6 -9 10 -2,则最大子序列和为16。

下面依次给出几个不同实现算法

int MaxSubseqSum1( int A[], int N )//算法1  T( N ) = O( N3 )
{
    int ThisSum, MaxSum = 0;
    int i, j, k;
    for( i = 0; i < N; i++ )   /* i是子列左端位置*/
    {
        for( j = i; j < N; j++ )   /* j是子列右端位置*/
        {
            ThisSum = 0; /* ThisSum是从A[i]到A[j]的子列和*/
            for( k = i; k <= j; k++ )
                ThisSum += A[k];
            if( ThisSum > MaxSum ) /* 如果刚得到的这个子列和更大*/
                MaxSum = ThisSum; /* 则更新结果*/
        } /* j循环结束*/
    } /* i循环结束*/
    return MaxSum;
}


int MaxSubseqSum2( int A[], int N )  //算法2T( N ) = O( N2 )
{
    int ThisSum, MaxSum = 0;
    int i, j;
    for( i = 0; i < N; i++ )   /* i是子列左端位置*/
    {
        ThisSum = 0; /* ThisSum是从A[i]到A[j]的子列和*/
        for( j = i; j < N; j++ )   /* j是子列右端位置*/
        {
            ThisSum += A[j];
            /*对于相同的i,不同的j,只要在j-1次循环的基础上累加1项即可*/
            if( ThisSum > MaxSum ) /* 如果刚得到的这个子列和更大*/
                MaxSum = ThisSum; /* 则更新结果*/
        } /* j循环结束*/
    } /* i循环结束*/
    return MaxSum;
}
 
 int MaxSubseqSum4( int A[], int N ) //算法4T( N ) = O( N2 )
{
    int ThisSum, MaxSum;
    int i;
    ThisSum = MaxSum = 0;
    for( i = 0; i < N; i++ )
    {
        ThisSum += A[i]; /* 向右累加*/
        if( ThisSum > MaxSum )
            MaxSum = ThisSum; /* 发现更大和则更新当前结果*/
        else if( ThisSum < 0 ) /* 如果当前子列和为负*/
            ThisSum = 0; /* 则不可能使后面的部分和增大,抛弃之*/
    }
    return MaxSum;
}//“在线”的意思是指每输入一个数据就进行即时处理,在任 何一个地方中止输入,算法都能正确给出当前的解。

算法3---分治法

技术分享

技术分享


最大子序列和问题

标签:acm   最大子序列和   

原文地址:http://blog.csdn.net/u013050857/article/details/42219071

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!