Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 9769 | Accepted: 6959 |
Description
In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn ? 1 + Fn ? 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …
An alternative formula for the Fibonacci sequence is
.
Given an integer n, your goal is to compute the last 4 digits of Fn.
Input
The input test file will contain multiple test cases. Each test case consists of a single line containing n (where 0 ≤ n ≤ 1,000,000,000). The end-of-file is denoted by a single line containing the number ?1.
Output
For each test case, print the last four digits of Fn. If the last four digits of Fn are all zeros, print ‘0’; otherwise, omit any leading zeros (i.e., print Fn mod 10000).
Sample Input
0 9 999999999 1000000000 -1
Sample Output
0 34 626 6875
Hint
As a reminder, matrix multiplication is associative, and the product of two 2 × 2 matrices is given by
.
Also, note that raising any 2 × 2 matrix to the 0th power gives the identity matrix:
.
解题思路:单纯的快速矩阵幂
快速矩阵幂模板:
Matrix add(Matrix a,Matrix b){ Matrix ans; for (int i=0;i<2;i++){ for (int j=0;j<2;j++){ ans.mat[i][j]=a.mat[i][j]+b.mat[i][j]; if (ans.mat[i][j]>=m){ ans.mat[i][j]%=m; } } } return ans; } Matrix mul(Matrix a,Matrix b){ Matrix ans; for (int i=0;i<2;i++){ for (int j=0;j<2;j++){ ans.mat[i][j]=0; for (int k=0;k<2;k++){ ans.mat[i][j]+=a.mat[i][k]*b.mat[k][j]; if (ans.mat[i][j]>=m){ ans.mat[i][j]%=m; } } } } return ans; } Matrix Init(){ Matrix ans; for (int i=0;i<2;i++){ for (int j=0;j<2;j++){ if (i==j) ans.mat[i][j]=1; else ans.mat[i][j]=0; } } return ans; } Matrix exp(Matrix a,int k){ Matrix ans=Init(); while (k){ if (k&1) ans=mul(ans,a); a=mul(a,a); k>>=1; } return ans; }
参考代码:
#include <iostream> using namespace std; int m=10000; struct Matrix{ long long mat[2][2]; }; Matrix add(Matrix a,Matrix b){ Matrix ans; for (int i=0;i<2;i++){ for (int j=0;j<2;j++){ ans.mat[i][j]=a.mat[i][j]+b.mat[i][j]; if (ans.mat[i][j]>=m){ ans.mat[i][j]%=m; } } } return ans; } Matrix mul(Matrix a,Matrix b){ Matrix ans; for (int i=0;i<2;i++){ for (int j=0;j<2;j++){ ans.mat[i][j]=0; for (int k=0;k<2;k++){ ans.mat[i][j]+=a.mat[i][k]*b.mat[k][j]; if (ans.mat[i][j]>=m){ ans.mat[i][j]%=m; } } } } return ans; } Matrix Init(){ Matrix ans; for (int i=0;i<2;i++){ for (int j=0;j<2;j++){ if (i==j) ans.mat[i][j]=1; else ans.mat[i][j]=0; } } return ans; } Matrix exp(Matrix a,int k){ Matrix ans=Init(); while (k){ if (k&1) ans=mul(ans,a); a=mul(a,a); k>>=1; } return ans; } int main(){ Matrix a; a.mat[0][0]=a.mat[0][1]=a.mat[1][0]=1; a.mat[1][1]=0; int n; while (cin>>n&&n!=-1){ Matrix ans=exp(a,n); cout<<ans.mat[0][1]%m<<endl; } return 0; }
原文地址:http://blog.csdn.net/codeforcer/article/details/42237997