标签:
原题:
An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property. Figures 1-4 illustrate the rotation rules.
Now given a sequence of insertions, you are supposed to tell the root of the resulting AVL tree.
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (<=20) which is the total number of keys to be inserted. Then N distinct integer keys are given in the next line. All the numbers in a line are separated by a space.
Output Specification:
For each test case, print ythe root of the resulting AVL tree in one line.
Sample Input 1:
5 88 70 61 96 120
Sample Output 1:
70
Sample Input 2:
7 88 70 61 96 120 90 65
Sample Output 2:
88
#include <iostream> #include <sstream> #include <string> using namespace std; template<typename T>class AVLTreeNode; template<typename T>AVLTreeNode<T>* SingleLeftRotation(AVLTreeNode<T>* A); template<typename T>AVLTreeNode<T>* SingleRightRotation(AVLTreeNode<T>* A); template<typename T>AVLTreeNode<T>* DoubleLeftRightRotation(AVLTreeNode<T>* A); template<typename T>AVLTreeNode<T>* DoubleRightLeftRotation(AVLTreeNode<T>* A); template<typename T>class AVLTreeNode { public: T Data; AVLTreeNode<T>* Left; AVLTreeNode<T>* Right; int Height; }; inline int Max(int a, int b) { return a > b ? a : b; } template<typename T>int GetHeight(AVLTreeNode<T>* A) { if(!A) return 0; return Max(GetHeight(A->Left), GetHeight(A->Right)) + 1; } template<typename T>AVLTreeNode<T>* AVL_Insertion(T x, AVLTreeNode<T>* t) { if(!t) { t = new AVLTreeNode<T>; t->Data = x; t->Height = 0; t->Left = t->Right = 0; } else if(x < t->Data) { t->Left = AVL_Insertion(x, t->Left); if(GetHeight(t->Left) - GetHeight(t->Right) == 2) { if(x < t->Left->Data) t = SingleLeftRotation(t); else t = DoubleLeftRightRotation(t); } } else if(x > t->Data) { t->Right = AVL_Insertion(x, t->Right); if(GetHeight(t->Left) - GetHeight(t->Right) == -2) { if(x > t->Right->Data) t = SingleRightRotation(t); else t = DoubleRightLeftRotation(t); } } t->Height = Max(GetHeight(t->Left), GetHeight(t->Right)) + 1; return t; } template<typename T>AVLTreeNode<T>* SingleLeftRotation(AVLTreeNode<T>* A) { AVLTreeNode<T>* B = A->Left; // A-88 A->Left = B->Right; B->Right = A; // B-70 A->Height = Max(GetHeight(A->Left), GetHeight(A->Right)) + 1; B->Height = Max(GetHeight(B->Left), A->Height) + 1; return B; } template<typename T>AVLTreeNode<T>* SingleRightRotation(AVLTreeNode<T>* A) { AVLTreeNode<T>* B = A->Right; A->Right = B->Left; B->Left = A; A->Height = Max(GetHeight(A->Left), GetHeight(A->Right)) + 1; B->Height = Max(A->Height, GetHeight(B->Right)) + 1; return B; } template<typename T>AVLTreeNode<T>* DoubleLeftRightRotation(AVLTreeNode<T>* A) { A->Left = SingleRightRotation(A->Left); return SingleLeftRotation(A); } template<typename T>AVLTreeNode<T>* DoubleRightLeftRotation(AVLTreeNode<T>* A) { A->Right = SingleLeftRotation(A->Right); return SingleRightRotation(A); } int main(void) { int n, tmp; cin >> n; string line; cin.ignore(100, '\n'); getline(cin, line, '\n'); istringstream stream(line); AVLTreeNode<int>*t = NULL; for(int i = 0; i < n; ++i) { stream >> tmp; t = AVL_Insertion(tmp, t); } cout << t->Data << endl; return 0; }
标签:
原文地址:http://blog.csdn.net/mywsfxzxb/article/details/42241229