标签:
原题:
An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property. Figures 1-4 illustrate the rotation rules.


Now given a sequence of insertions, you are supposed to tell the root of the resulting AVL tree.
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (<=20) which is the total number of keys to be inserted. Then N distinct integer keys are given in the next line. All the numbers in a line are separated by a space.
Output Specification:
For each test case, print ythe root of the resulting AVL tree in one line.
Sample Input 1:
5 88 70 61 96 120
Sample Output 1:
70
Sample Input 2:
7 88 70 61 96 120 90 65
Sample Output 2:
88
#include <iostream>
#include <sstream>
#include <string>
using namespace std;
template<typename T>class AVLTreeNode;
template<typename T>AVLTreeNode<T>* SingleLeftRotation(AVLTreeNode<T>* A);
template<typename T>AVLTreeNode<T>* SingleRightRotation(AVLTreeNode<T>* A);
template<typename T>AVLTreeNode<T>* DoubleLeftRightRotation(AVLTreeNode<T>* A);
template<typename T>AVLTreeNode<T>* DoubleRightLeftRotation(AVLTreeNode<T>* A);
template<typename T>class AVLTreeNode
{
public:
T Data;
AVLTreeNode<T>* Left;
AVLTreeNode<T>* Right;
int Height;
};
inline int Max(int a, int b)
{
return a > b ? a : b;
}
template<typename T>int GetHeight(AVLTreeNode<T>* A)
{
if(!A)
return 0;
return Max(GetHeight(A->Left), GetHeight(A->Right)) + 1;
}
template<typename T>AVLTreeNode<T>* AVL_Insertion(T x, AVLTreeNode<T>* t)
{
if(!t)
{
t = new AVLTreeNode<T>;
t->Data = x;
t->Height = 0;
t->Left = t->Right = 0;
}
else if(x < t->Data)
{
t->Left = AVL_Insertion(x, t->Left);
if(GetHeight(t->Left) - GetHeight(t->Right) == 2)
{
if(x < t->Left->Data)
t = SingleLeftRotation(t);
else
t = DoubleLeftRightRotation(t);
}
}
else if(x > t->Data)
{
t->Right = AVL_Insertion(x, t->Right);
if(GetHeight(t->Left) - GetHeight(t->Right) == -2)
{
if(x > t->Right->Data)
t = SingleRightRotation(t);
else
t = DoubleRightLeftRotation(t);
}
}
t->Height = Max(GetHeight(t->Left), GetHeight(t->Right)) + 1;
return t;
}
template<typename T>AVLTreeNode<T>* SingleLeftRotation(AVLTreeNode<T>* A)
{
AVLTreeNode<T>* B = A->Left; // A-88
A->Left = B->Right;
B->Right = A; // B-70
A->Height = Max(GetHeight(A->Left), GetHeight(A->Right)) + 1;
B->Height = Max(GetHeight(B->Left), A->Height) + 1;
return B;
}
template<typename T>AVLTreeNode<T>* SingleRightRotation(AVLTreeNode<T>* A)
{
AVLTreeNode<T>* B = A->Right;
A->Right = B->Left;
B->Left = A;
A->Height = Max(GetHeight(A->Left), GetHeight(A->Right)) + 1;
B->Height = Max(A->Height, GetHeight(B->Right)) + 1;
return B;
}
template<typename T>AVLTreeNode<T>* DoubleLeftRightRotation(AVLTreeNode<T>* A)
{
A->Left = SingleRightRotation(A->Left);
return SingleLeftRotation(A);
}
template<typename T>AVLTreeNode<T>* DoubleRightLeftRotation(AVLTreeNode<T>* A)
{
A->Right = SingleLeftRotation(A->Right);
return SingleRightRotation(A);
}
int main(void)
{
int n, tmp;
cin >> n;
string line;
cin.ignore(100, '\n');
getline(cin, line, '\n');
istringstream stream(line);
AVLTreeNode<int>*t = NULL;
for(int i = 0; i < n; ++i)
{
stream >> tmp;
t = AVL_Insertion(tmp, t);
}
cout << t->Data << endl;
return 0;
}
标签:
原文地址:http://blog.csdn.net/mywsfxzxb/article/details/42241229