标签:hadoop mapreduce 原理
hadoop join问题1
Join讲解1: 获取员工所在部门信息,输出格式要求:员工编号,员工姓名,部门名称,部门编号
1、原始数据
员工数据
empno ename
job mgr
hiredate sal
comm deptno
loc
7499 allen
salesman 7698
1981-02-20 1600
300 30
7782 clark
managers 7639
1981-06-09 2450
10
7654 martin
salesman 7698
1981-03-20 1250
1400 30
boston
7900 james
clerk 7698
1981-01-09 950
30
7788 scott
analyst 7566
1981-09-01 3000
100 20
部门数据
deptno dname
loc
30 sales
chicago
20 research
dallas
10 accounting
newyork
2、实现的功能类似于
select e.empno,e.ename,d.dname,d.deptno from emp e join dept d on e.deptno=d.deptno;
key: deptno
第一种思路:
Text:empno_ename_0/deptno_dname_1;
第二种思路:
Consume bean: empno/ename/deptno/dname/flag
3、处理join的思路:
将Join key 当作map的输出key, 也就是reduce的输入key , 这样只要join的key相同,shuffle过后,就会进入到同一个reduce 的key - value list 中去。
需要为join的2张表设计一个通用的一个bean. 并且bean中加一个flag的标志属性,这样可以根据flag来区分是哪张表的数据。
reduce 阶段根据flag来判断是员工数据还是部门数据就很容易了 。而join的真正处理是在reduce阶段。
4、实现中间bean
存储数据的bean (由于数据要在网络上传输必须序列化,hadoop处理的时候需要分组和排序,所以要实现WritableComparable接口):
package com.wy.hadoop.join.one;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import org.apache.hadoop.io.WritableComparable;
public class Emplyee implements WritableComparable {
private String empNo ="";
private String empName ="";
private String deptNo="";
private String deptName="";
private int flag =0;
public Emplyee(){};
public Emplyee(String empNo,String empName,String deptNo,String deptName,int flag){
this.empNo = empNo;
this.empName = empName;
this.deptNo = deptNo;
this.deptName = deptName;
this.flag = flag;
}
public Emplyee(Emplyee e){
this.empNo = e.empNo;
this.empName = e.empName;
this.deptNo = e.deptNo;
this.deptName = e.deptName;
this.flag = e.flag;
}
public String getEmpNo() {
return empNo;
}
public void setEmpNo(String empNo) {
this.empNo = empNo;
}
public String getEmpName() {
return empName;
}
public void setEmpName(String empName) {
this.empName = empName;
}
public String getDeptNo() {
return deptNo;
}
public void setDeptNo(String deptNo) {
this.deptNo = deptNo;
}
public String getDeptName() {
return deptName;
}
public void setDeptName(String deptName) {
this.deptName = deptName;
}
public int getFlag() {
return flag;
}
public void setFlag(int flag) {
this.flag = flag;
}
@Override
public void readFields(DataInput input) throws IOException {
// TODO Auto-generated method stub
this.empNo = input.readUTF();
this.empName = input.readUTF();
this.deptNo = input.readUTF();
this.deptName = input.readUTF();
this.flag = input.readInt();
}
@Override
public void write(DataOutput output) throws IOException {
// TODO Auto-generated method stub
output.writeUTF(this.empNo);
output.writeUTF(this.empName);
output.writeUTF(this.deptNo);
output.writeUTF(this.deptName);
output.writeInt(this.flag);
}
@Override
public int compareTo(Object o) {
// TODO Auto-generated method stub
return 0;
}
@Override
public String toString() {
String string = this.empNo+","+this.empName+","+this.deptName;
return string;
}
}
package com.hadoop.eight;
import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
public class JoinOneMapper extends Mapper<LongWritable, Text, IntWritable, Emplyee> {
@Override
protected void map(LongWritable key, Text value,Context context)
throws IOException, InterruptedException {
String line = value.toString();
String[] arr = line.split("\t");
System.out.println("-------"+arr.length);
if(arr.length<=3){//部门数据
Emplyee emplyee = new Emplyee();
emplyee.setDeptno(arr[0]);
emplyee.setDname(arr[1]);
emplyee.setFlag(0);
context.write(new IntWritable(Integer.parseInt(arr[0])), emplyee);
}else{//员工信息
Emplyee emplyee = new Emplyee();
emplyee.setEmpno(arr[0]);
emplyee.setEname(arr[1]);
emplyee.setDeptno(arr[7]);
emplyee.setFlag(1);
context.write(new IntWritable(Integer.parseInt(arr[7])), emplyee);
}
}
public static void main(String[] args){
String line = "30
sales chicago";
String[] arr = line.split("\t");
System.out.println("-------"+arr.length);
if(arr.length==3){//部门数据
System.out.println("----1");
}else{//员工信息
System.out.println("----2");
}
}
}
package com.hadoop.eight;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
public class JoinOneReducer extends Reducer<IntWritable, Emplyee, NullWritable, Text> {
@Override
protected void reduce(IntWritable key, Iterable<Emplyee> values,Context context)
throws IOException, InterruptedException {
Emplyee dept = null;
List<Emplyee> list = new ArrayList<Emplyee>();
for(Emplyee e:values){
if(e.getFlag()==0){//部门数据
dept = new Emplyee(e);
list.add(new Emplyee(e));
}else{
list.add(new Emplyee(e));
}
}
for(Emplyee e:list){
e.setDname(dept.getDname());
context.write(NullWritable.get(), new Text(e.toString()));
}
}
}
package com.hadoop.eight;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class JobMain {
/**
* @param args
*/
public static void main(String[] args)throws Exception {
Configuration configuration = new Configuration();
Job job = new Job(configuration,"join_one_job");
job.setJarByClass(JobMain.class);
job.setMapperClass(JoinOneMapper.class);
job.setMapOutputKeyClass(IntWritable.class);
job.setMapOutputValueClass(Emplyee.class);
job.setReducerClass(JoinOneReducer.class);
job.setOutputKeyClass(NullWritable.class);
job.setOutputValueClass(Text.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
Path path = new Path(args[1]);
FileSystem fs = FileSystem.get(configuration);
if(fs.exists(path)){
fs.delete(path, true);
}
FileOutputFormat.setOutputPath(job, path);
System.exit(job.waitForCompletion(true)?0:1);
}
}
hadoop join问题1
标签:hadoop mapreduce 原理
原文地址:http://blog.csdn.net/u010220089/article/details/42242647