码迷,mamicode.com
首页 > 其他好文 > 详细

二叉树(16)---- 一个二叉树是否包含另一个二叉树

时间:2014-12-30 15:23:28      阅读:240      评论:0      收藏:0      [点我收藏+]

标签:二叉树


二叉树问题合集


2、问题描述

二叉树A和B的每个节点的数据(int型数据)存储在不同文件中,存储方式为前序遍历和中序遍历,根据这两种遍历重建二叉树,并且判断二叉树A是否包含二叉树B。


3、算法描述

(1)首先将节点数据的前序遍历和中序遍历序列读入数组

(2)分别根据各自的前序遍历和中序遍历重建二叉树A和B

(3)判断B是否在A中

代码:

#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
#include <string.h>
#include <stdlib.h>
#include <memory.h>
#include <stack>

using namespace std;

enum COMMON_SIZE
{
	BUF_MAX_SIZE = 1024,
	MAX_NUM_LEN = 10,
};


enum ERROR_VALUE 
{
	INPUT_PARAM_ERROR = -1,
	OPEN_FILE_ERROR = -2,
	FILE_NOT_EXSIT = -3,
	FILE_IS_EMTPY = -4,
	ALLOCA_FAILURE = -5,
	REBUILD_BTREE_ERROR = -6,
	NUM_OVERFLOW_ERROR = -7,
};

typedef struct BTreeNode_t_{
	int m_nValue;
	struct BTreeNode_t_ *m_pLeft;
	struct BTreeNode_t_ *m_pRight;
} BTreeNode_t;

void release_btree( BTreeNode_t *pRoot){
	if( pRoot == NULL )
		return;

	if( pRoot->m_pLeft )
		release_btree( pRoot->m_pLeft);
	if( pRoot->m_pRight)
		release_btree( pRoot->m_pRight);

	free(pRoot);
	pRoot = NULL;
	return;
}


BTreeNode_t * reconstruct_btree_by_preinorder( int *pPreOrder, int *pInOrder, int tree_nodes_total){
	if( pPreOrder == NULL || pInOrder == NULL ){
		fprintf(stderr, "ERROR: while construct btree by preinorder\n");
		return NULL;
	}	
	

	int m_nValue = pPreOrder[0];
	int root_data_index = -1;
	int i = 0;
	for( i = 0; i < tree_nodes_total; ++i ){
		if( pPreOrder[0] == pInOrder[i] ){
			root_data_index = i;
			break;
		}
	}

	if( root_data_index == -1 ){
		fprintf(stderr, "note: pPreOrder[0] is %d, pInOrder[0] is %d\n",
			pPreOrder[0], pInOrder[0]);
		fprintf(stderr, "note: root_data_index is -1, total nodes: %d\n", tree_nodes_total);
		return NULL;
	}

	BTreeNode_t *pRoot = NULL;
	pRoot = (BTreeNode_t *) malloc( sizeof( BTreeNode_t ));
	if( pRoot == NULL ){
		fprintf(stderr, "ERROR: can't alloca btree node: %d\n", m_nValue);
		return NULL;
	}

	pRoot->m_nValue = m_nValue;
	pRoot->m_pLeft = NULL;
	pRoot->m_pRight = NULL;

	int left_tree_len = root_data_index;
	int right_tree_len = tree_nodes_total - left_tree_len - 1;
	int *pleft_preorder = pPreOrder + 1;
	int *pright_preorder = pPreOrder + 1 + left_tree_len;
	int *pleft_inorder = pInOrder;
	int *pright_inorder = pInOrder + left_tree_len + 1;

	if( left_tree_len > 0 )
	{
		pRoot->m_pLeft = reconstruct_btree_by_preinorder( pleft_preorder, pleft_inorder, left_tree_len);
		if( pRoot->m_pLeft == NULL ){
			fprintf(stderr, "ERROR: failure to rebuild leftree, now release data: %d\n",
				m_nValue);
			release_btree( pRoot);
			pRoot = NULL;
			return NULL;
		}
	}

	if( right_tree_len > 0 ){
		pRoot->m_pRight = reconstruct_btree_by_preinorder( pright_preorder, pright_inorder, right_tree_len );
		if( pRoot->m_pRight == NULL ){
			fprintf(stderr, "ERROR: failure to right tree, now release data: %d\n",
				m_nValue);
			release_btree( pRoot );
			pRoot = NULL;
			return NULL;
		}
	}

	return pRoot;
}


int get_traver_data( char *buf, int *pOrder, int *order_len ){
	if( buf == NULL || pOrder == NULL ){
		return INPUT_PARAM_ERROR;
	}

	char *ptr = buf;
	char *pNumStart = ptr;
	int i = 0;
	int numLen = 0;
	int get_no_num = 0;
	int flag = 0;
	fprintf(stderr, "note: now enter get_traver_data()\n");
	while( *ptr != '\0' ){
		if( ( *ptr >= '0' ) && ( *ptr <= '9') ){
			++numLen;
		} else  if( *ptr == ' ' ){
			*ptr = '\0';
			if( numLen > 0 && numLen <= MAX_NUM_LEN ){
				pOrder[i] = atoi( ptr - numLen );
				fprintf(stderr, "note: num is: %d\n", pOrder[i]);
				++i;	
			}
			else if ( numLen > MAX_NUM_LEN){
				flag = NUM_OVERFLOW_ERROR;
				break;
			}
			numLen = 0;
			
		} else{
			get_no_num = -1;
			break;
		}

		++ptr;
	}
	if( numLen != 0 ){
		pOrder[i] = atoi( ptr - numLen);
		fprintf(stderr, "note: num is: %d\n", pOrder[i]);
	}

	if( get_no_num != 0 )
		return get_no_num;

	*order_len = i + 1;
	fprintf(stderr, "note: finish get_traver_data()\n");
	return flag;
}



int get_traverse_nodes( char * file_name, int **pPreOrder, int **pInOrder, int *tree_nodes_total ){
	if( file_name == NULL ){
		fprintf(stderr, "ERROR: file(%s), line(%d), input parameter error\n", 
				__FILE__, __LINE__);
		return INPUT_PARAM_ERROR;	
	}

	if( access( file_name, F_OK ) != 0){
		fprintf(stderr, "ERROR: file(%s) not exsit\n", file_name);
		return FILE_NOT_EXSIT;
	}

	struct stat fstat;
	size_t file_size = -1;

	stat(file_name, &fstat);
	file_size = fstat.st_size;
	if( file_size == 0 ){
		fprintf(stderr, "ERROR: file(%s) is empty\n", file_name);
		return FILE_IS_EMTPY;
	}
	fprintf(stderr, "note: file size: %ld\n", fstat.st_size);

	char * buf = NULL;
	buf = (char *)malloc( (file_size + 1) * sizeof( char ));
	if( buf == NULL ){
		fprintf(stderr, "ERROR: alloca buffer failure\n");
		return ALLOCA_FAILURE;
	}

	FILE *input = fopen( file_name, "rb");
	if( input == NULL ){
		fprintf(stderr, "ERROR: can't open input file [%s]\n", file_name);
		free(buf);
		buf = NULL;
		return OPEN_FILE_ERROR;
	}

	int line_len = -1;
	int index = 0;
	int flag = 0;
	int fini_read = 0;
	int preorder_len = 0;
	int inorder_len = 0;
	while( fgets( buf, file_size , input) != NULL ){
		size_t buf_len = strlen( buf );
		if( buf[ buf_len - 1] == '\n' )
			buf[ buf_len - 1 ] = '\0';
		fprintf(stderr, "note: current line is: %s\n", buf);
		switch( index )
		{
			case 0 :
			{
				*pPreOrder = (int *) malloc( buf_len * sizeof( int ));
				if( *pPreOrder == NULL ){
					flag = -1;
					break;
				}
				fprintf(stderr, "note: finish to get pPreOrder\n");
				flag = get_traver_data( buf, *pPreOrder, &preorder_len);
				break;	
			}
			case 1 :
			{
				*pInOrder = (int *) malloc( buf_len * sizeof( int ));
				if( *pInOrder == NULL ){
					flag = -1;
					break;
				}
				fprintf(stderr, "note: finish to get pInOrder\n");
				flag = get_traver_data( buf, *pInOrder, &inorder_len );
				break;
			}
			default:
			{
				break;
			}
		}

		++index;
		if( flag != 0 || index == 2)
			break;
	}
	if( (flag != 0 ) || ( preorder_len != inorder_len)){
		fprintf(stderr, "ERROR: flag is %d, preorder_len is %d, inorder_len is %d\n", flag, preorder_len, inorder_len);
		if( *pPreOrder ){
			free( *pPreOrder );
			*pPreOrder = NULL;
		}
		if( *pInOrder ){
			free( *pInOrder );
			*pInOrder = NULL;
		}
		flag = -1;
	}

	free( buf );
	buf == NULL;


	fclose( input );
	input = NULL;

	*tree_nodes_total = preorder_len;
	fprintf(stderr, "note: sucess finish get_traverse_nodes()\n");
	return flag;	
}

void print_btree( BTreeNode_t *pRoot){
	if( pRoot == NULL )
		return;
	stack< BTreeNode_t *> st;
	while( pRoot != NULL || !st.empty()){ 
		while( pRoot != NULL ){
			printf("preorder test: node data: %d\n", pRoot->m_nValue);
			st.push( pRoot);
			pRoot = pRoot->m_pLeft;
		}
		
		if( !st.empty()){
			pRoot = st.top();
			st.pop();
			pRoot = pRoot->m_pRight;
		}
	}

	return;
}

void pprint_btree( BTreeNode_t *pRoot){
	if( pRoot == NULL )
		return;

	fprintf(stderr, "preorder test: node: %d\n", pRoot->m_nValue);
	if( pRoot->m_pLeft )
		print_btree( pRoot->m_pLeft);
	if( pRoot->m_pRight)
		print_btree( pRoot->m_pRight);

	return;
}

int check_is_include_helper( BTreeNode_t *pRoot1, BTreeNode_t *pRoot2){
	if( pRoot1 == NULL || pRoot2 == NULL ){
		fprintf(stderr, "ERROR: in check_is_include_helper(), input param error\n");
		return INPUT_PARAM_ERROR;
	}

	stack <BTreeNode_t *> st1;
	stack <BTreeNode_t *> st2;
	int flag = 0;
	while( (pRoot1 != NULL || !st1.empty()) &&
		( pRoot2 != NULL || !st2.empty()) ){
		while( pRoot1 != NULL && pRoot2 != NULL){
			printf("note: cur data: pRoot1->m_nValue: %d, pRoot2->m_nValue: %d\n",
				pRoot1->m_nValue, pRoot2->m_nValue);
			if( pRoot1->m_nValue != pRoot2->m_nValue){
				flag = -1;
				break;
			}
			st1.push( pRoot1);
			st2.push( pRoot2);
			pRoot1 = pRoot1->m_pLeft;
			pRoot2 = pRoot2->m_pLeft;
		}
		if( flag != 0 )
			break;
		if( !st1.empty() && !st2.empty()){
			pRoot1 = st1.top();
			st1.pop();
			pRoot2 = st2.top();
			st2.pop();
			pRoot1 = pRoot1->m_pRight;
			pRoot2 = pRoot2->m_pRight;
		}
	}

	if( pRoot2 != NULL || !st2.empty() ){
		flag = -1;
	}

	while( !st1.empty() ){
		st1.pop();
	}
	
	while( !st2.empty() ){
		st2.pop();
	}

	return flag;

	
}

int check_is_include( BTreeNode_t *pRoot1, BTreeNode_t *pRoot2){
	if( pRoot1 == NULL || pRoot2 == NULL ){
		fprintf(stderr, "ERROR: in check_is_include(), input param error\n");
		return INPUT_PARAM_ERROR;
	}

	stack <BTreeNode_t*> st;
	int flag = -1;
	while( pRoot1 != NULL || !st.empty()){
		while( pRoot1 != NULL){
			printf("note: now check node data: %d\n", pRoot1->m_nValue);
			if( check_is_include_helper( pRoot1, pRoot2) == 0 ){
				flag = 0;
				break;
			}
			st.push( pRoot1);
			pRoot1 = pRoot1->m_pLeft;
		}
		if( flag == 0)
			break;
		if( !st.empty() ){
			pRoot1 = st.top();
			st.pop();
			pRoot1 = pRoot1->m_pRight;
		}
	}
	
	while( !st.empty() )
		st.pop();

	return flag;
}

int 
main( int argc, char ** argv){
	if( argc < 3 ){
		fprintf(stderr, "ERROR: file(%s), line(%d), input parameter error\n", __FILE__, __LINE__);
		return INPUT_PARAM_ERROR;
	}

	char *afile = argv[1];
	char *bfile = argv[2];

	int ret = 0;
	int *pPreOrder = NULL;
	int *pInOrder = NULL;
	BTreeNode_t *pRoot1 = NULL;
	BTreeNode_t *pRoot2 = NULL;
	int tree_nodes_total = 0;
	ret = get_traverse_nodes( afile, &pPreOrder, &pInOrder, &tree_nodes_total);
	if( ret != 0 || tree_nodes_total == 0){
		fprintf(stderr, "ERROR: failure to get tree nodes info from file(%s)\n", afile);
		goto end;
	}

	
	pRoot1 = reconstruct_btree_by_preinorder( pPreOrder, pInOrder, tree_nodes_total);
	if( pRoot1 == NULL ){
		fprintf(stderr, "ERROR: failure to rebuild btree from file(%s)\n", afile);
		ret = REBUILD_BTREE_ERROR;
		goto end;
	} 
	
	free( pPreOrder );
	pPreOrder = NULL;
	free( pInOrder );
	pInOrder = NULL;

	print_btree( pRoot1 );

	ret = get_traverse_nodes( bfile, &pPreOrder, &pInOrder, &tree_nodes_total);
	if( ret != 0 || tree_nodes_total == 0){
		fprintf(stderr, "ERROR: failure to get tree nodes info from file(%s)\n", bfile);
		goto end;
	}
	
	pRoot2 = reconstruct_btree_by_preinorder( pPreOrder, pInOrder, tree_nodes_total);
	if( pRoot2 == NULL ){
		fprintf(stderr, "ERROR: failure to rebuild btree from file(%s)\n", bfile);
		ret = REBUILD_BTREE_ERROR;
		goto end;
	}
	
	print_btree( pRoot2);
#if 1
	ret = check_is_include( pRoot1, pRoot2);
	if( ret != 0 ){
		fprintf(stderr, "ERROR: failure to find b btree in a btree\n");
		goto end;
	}
#endif
	printf("NOTE: success to find b btree in a btree\n");	

end:
	if( pPreOrder != NULL ){
		free(pPreOrder);
		pPreOrder = NULL;
	}
	
	if( pInOrder != NULL ){
		free( pInOrder );
		pInOrder = NULL;
	}

	if( pRoot1 )
		release_btree( pRoot1);

	if( pRoot2 )
		release_btree( pRoot2);

	return ret;
}


代码运行显示:

二叉树A:

                          1

                            2                          3

                4                  5       6                   7

        8


二叉树B:

                                       3

                             6               7


分别存放在aBTree.txt和bBTree.txt中

aBTree.txt:

技术分享


bBTree.txt:

技术分享


运行:


./a.out   aBTree.txt    bBTree.txt

可以找到


./a.out   aBTree.txt   aBTree.txt

找不到






二叉树(16)---- 一个二叉树是否包含另一个二叉树

标签:二叉树

原文地址:http://blog.csdn.net/beitiandijun/article/details/42264909

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!