标签:
话说上回说到,C程序运行之前,必须要加载到其进程地址空间中。今儿咱就扯扯这个加载到底是怎么加载的。 一图胜前言,这个图简单说明了可执行文件加载过程的逻辑流,在此只做粗粒度概要说明。需要准确描述的,请出门左转,看源码去吧。
1. 程序总是运行在进程上下文(context)中的,当输入./memlayout时,shell会创建一个子进程。除每个进程独有的专属信息外,子进程会继承父进程的大部分资源,如环境变量、进程空间映像等。也就是说,如果不重置子进程的内容,子进程会运行与父进程一样的程序。为了让子进程可以运行别的程序,就要通过execve这个系统调用来指定。
int execve( char *pathname, char *argv[], char *envp[] )
int do_execve( char *pathname, char *argv[], char *envp[] ,struct pt_regs *regs )
// pathname -> 可执行文件名指针
// argv -> 参数指针
// envp -> 环境变量指针
// pt_regs -> 用来保存切换到内核前用户空间的寄存器值
就像春风秋雨一样,原本一切都是那么自然,自然到你忍不住向女神表白,然后女神跟你说“你是个好人”。当execve向do_execve说我要你时,却凭空多出了一个变量struct pt_regs,这绝不不可以说不任性!这是因为,do_execve中的参数命令行参数指针、环境变量指针,会被内核用来设置子进程的用户栈。而根据系统调用约定(calling conventions),Linux和Unix在系统调用时有一个不同,那就是Linux是用寄存器来传递系统调用参数的,而Unix是通过栈。所以在切换到内核时,就有必要保存传递到寄存器中的参数。而pt_regs这个结构体就是用来保存CPU的寄存器状态的。原来还是那么自然,只是女神已成路人。
// include/asm-i386/ptrace.h
struct pt_regs {
long ebx; // pathname
long ecx; // argv
long edx; // envp
long esi;
long edi;
long eax;
long eip;
……
}
2. 那么do_execve要大发神威了吧?切莫急先。物理学告诉我们,力都是有一个作用对象的,就好比我们追的都是女神。而do_execve的操作对象是一个叫struct linux_binprm的结构体,它用来保存要执行的文件的相关信息。do_execve会调用load_binprm,将需要的可执行文件信息都加载到linux_binprm中,包括可执行文件的ELF头信息、路径名、参数字符串、环境变量字符串等等。(注意:load_binprm并不是一个真正意义上的函数,为了方便理解,用它来概括表示由do_execve完成的填充任务。)
struct linux_binprm { char buf[BINPRM_BUF_SIZE]; //保存可执行文件的头128字节 struct page *page[MAX_ARG_PAGES]; // 保存参数、环境变量 struct mm_struct *mm; unsigned long p; //当前内存页最高地址 int sh_bang; struct file * file; //要执行的文件 int e_uid, e_gid; //要执行的进程的有效用户ID和有效组ID kernel_cap_t cap_inheritable, cap_permitted, cap_effective; void *security; int argc, envc; //命令行参数和环境变量数目 char * filename; //要执行的文件的名称 char * interp; //要执行的文件的真实名称,通常和filename相同 unsigned interp_flags; unsigned interp_data; unsigned long loader, exec;
}
接下来,do_execve会调用search_binary_handler()来查找可执行文件内容的处理程序。对于ELF格式的文件,则调用相应的load_elf_binary(),如果是a.out格式,则调用load_aout_binary()。在根据可执行文件中的section信息并将它们加载到进程空间前,load_elf_binary会首先将进程空间清空,然后将可执行文件映像加载到进程空间中。另外,load_elf_binary还会设置好用户栈:
调用setup_arg_pages,将linux_binprm.page中的参数、环境变量等字符串映射到用户栈中;
调用create_elf_tables,将argc、argv、envc、envp以及一些的“辅助向量(auxiliary vector)”压入到用户栈中。
此时的用户栈大概是这个样子的:
3. 终于草原已经准备好了,可以策马奔腾啦。一切又回到load_elf_binary()中,不过接下来就是见证神奇的时候啦,因为load_elf_binary要调用start_thread啦。不要小瞧这个调用,它不亚于数学老师跟我们说”我要变形了“的效果。
#define start_thread(regs, new_eip, new_esp) do { \
__asm__("movl %0,%%fs ; movl %0,%%gs": :"r" (0)); set_fs(USER_DS); regs->xds = __USER_DS; regs->xes = __USER_DS; regs->xss = __USER_DS; regs->xcs = __USER_CS; regs->eip = new_eip; regs->esp = new_esp; } while (0)
start_thread的实际调用是这样的start_thread(regs,elf_entry, bprm->p),其中__USER_*是前面提到的进程切换到内核前的寄存器值;elf_entry就是可执行文件的入口点,也就是C启动代码的入口位置,赋给eip;bprm->p就是用户栈的栈顶位置,赋给esp。接下来就会跳转到eip指向的C启动代码起始位置开始运行。
至于从C启动代码到main的距离,咱以后再表。
参考文献:
1- do_execve的具体内容:http://wenku.baidu.com/view/e97820ee4afe04a1b071de32.html
2- ELF文件加载详细流程:http://www.longene.org/techdoc/0328130001224576708.html
标签:
原文地址:http://www.cnblogs.com/chenwu128/p/4194638.html