标签:
题目链接:点击打开链接
好久没发题解了,
第一维的线段树更新到底,叶子节点建一棵线段树。
#include<iostream> #include<cstring> #include<cstdio> #include<cmath> #include<map> #include<vector> #include<set> #include<string> #include<algorithm> using namespace std; template <class T> inline bool rd(T &ret) { char c; int sgn; if (c = getchar(), c == EOF) return 0; while (c != '-' && (c<'0' || c>'9')) c = getchar(); sgn = (c == '-') ? -1 : 1; ret = (c == '-') ? 0 : (c - '0'); while (c = getchar(), c >= '0'&&c <= '9') ret = ret * 10 + (c - '0'); ret *= sgn; return 1; } template <class T> inline void pt(T x) { if (x <0) { putchar('-'); x = -x; } if (x>9) pt(x / 10); putchar(x % 10 + '0'); } const int N = 550; const int inf = 1000 * 1000 * 1000; int a[N][N]; class Segment_Tree{ public: class Node{ public: int l, r, max, min, lazy; Node(){} Node(int ll, int rr, int mmax, int mmin){ l = ll; r = rr; max = mmax; min = mmin; lazy = inf; } }; Node t[N << 2]; int pos = 0, Max, Min; int L(int x){ return x << 1; } int R(int x){ return x << 1 | 1; } void up(int id){ t[id].max = max(t[L(id)].max, t[R(id)].max); t[id].min = min(t[L(id)].min, t[R(id)].min); t[id].lazy = inf; } void down(int id){ if (t[id].lazy != inf){ t[L(id)].max = t[R(id)].max = t[id].lazy; t[L(id)].min = t[R(id)].min = t[id].lazy; t[L(id)].lazy = t[R(id)].lazy = t[id].lazy; t[id].lazy = inf; } } void build(int l, int r, int id){ t[id] = Node(l, r, 0, 0); if (l == r){ t[id].min = t[id].max = a[pos][l]; return; } int mid = (l + r) >> 1; build(l, mid, L(id)); build(mid + 1, r, R(id)); up(id); } void update(int l, int r, int val, int id){ if (l == t[id].l && r == t[id].r){ t[id].max = t[id].min = t[id].lazy = val; return; } down(id); int mid = (t[id].l + t[id].r) >> 1; if (r <= mid) update(l, r, val, L(id)); else if (mid < l) update(l, r, val, R(id)); else{ update(l, mid, val, L(id)); update(mid + 1, r, val, R(id)); } up(id); } void query(int l, int r, int id){ if (l == t[id].l && r == t[id].r){ Min = min(Min, t[id].min); Max = max(Max, t[id].max); return; } down(id); int mid = (t[id].l + t[id].r) >> 1; if (r <= mid) query(l, r, L(id)); else if (mid < l) query(l, r, R(id)); else{ query(l, mid, L(id)); query(mid + 1, r, R(id)); } } void Q(int l, int r){ Max = -inf; Min = inf; query(l, r, 1); } void P(int l, int r, int val){ update(l, r, val, 1); } }; class Two_Dimension_Segment_Tree{ public: class Node{ public: int l, r; Node(){} Node(int ll, int rr){ l = ll; r = rr; } }; Node t[N << 2]; Segment_Tree T[N]; int Max, Min, M; int L(int x){ return x << 1; } int R(int x){ return x << 1 | 1; } void build(int l, int r, int id){ t[id] = Node(l, r); if (l == r){ T[l].pos = l; T[l].build(1, M, 1); return; } int mid = (l + r) >> 1; build(l, mid, L(id)); build(mid + 1, r, R(id)); } void update(int l, int r, int x, int y, int val, int id){ if (l == r){ T[l].P(x, y, val); return; } int mid = (t[id].l + t[id].r) >> 1; if (r <= mid) update(l, r, x, y, val, L(id)); else if (mid < l) update(l, r, x, y, val, R(id)); else{ update(l, mid, x, y, val, L(id)); update(mid + 1, r, x, y, val, R(id)); } } void query(int l, int r, int x, int y, int id){ if (l == r){ T[l].Q(x, y); Max = max(Max, T[l].Max); Min = min(Min, T[l].Min); return; } int mid = (t[id].l + t[id].r) >> 1; if (r <= mid) query(l, r, x, y, L(id)); else if (mid < l) query(l, r, x, y, R(id)); else{ query(l, mid, x, y, L(id)); query(mid + 1, r, x, y, R(id)); } } void Q(int l, int r, int x, int y){ Max = -inf; Min = inf; query(l, r, x, y, 1); } void P(int l, int r, int x, int y, int val){ update(l, r, x, y, val, 1); } }; int n, m; Two_Dimension_Segment_Tree tree; void input(){ rd(n); rd(m); for (int i = 1; i <= n; i++) for (int j = 1; j <= m; j++)rd(a[i][j]); } int main(){ input(); tree.M = m; tree.build(1, n, 1); int q; rd(q); string s; int l, r, x, y, val; while (q-- > 0){ cin >> s; if (s[0] == 'q'){ rd(l); rd(x); rd(r); rd(y); tree.Q(l, r, x, y); printf("%d %d\n", tree.Max, tree.Min); } else { rd(x); rd(y); rd(val); tree.P(x, x, y, y, val); } } return 0; }
java:
import java.io.PrintWriter; import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.Iterator; import java.util.Scanner; import java.util.TreeSet; public class Main { static int N = 550; static int inf = 1000*1000*1000; int[][] a = new int[N][N]; class Segment_Tree{ class Node{ int l, r, max, min, lazy; Node(){} Node(int l, int r, int max, int min){ this.l = l; this.r = r; this.max = max; this.min = min; lazy = inf; } } public Node[] t = new Node[N<<2]; public int pos = 0, Max, Min; int L(int x){return x<<1;} int R(int x){return x<<1|1;} void up(int id){ t[id].max = max(t[L(id)].max, t[R(id)].max); t[id].min = min(t[L(id)].min, t[R(id)].min); t[id].lazy = inf; } void down(int id){ if(t[id].lazy != inf){ t[L(id)].max = t[R(id)].max = t[id].lazy; t[L(id)].min = t[R(id)].min = t[id].lazy; t[L(id)].lazy = t[R(id)].lazy = t[id].lazy; t[id].lazy = inf; } } public void build(int l, int r, int id){ t[id] = new Node(l, r, 0, 0); if(l == r){ t[id].min = t[id].max = a[pos][l]; return ; } int mid = (l+r)>>1; build(l, mid, L(id)); build(mid+1, r, R(id)); up(id); } void update(int l, int r, int val, int id){ if(l == t[id].l && r == t[id].r){ t[id].max = t[id].min = t[id].lazy = val; return ; } down(id); int mid = (t[id].l + t[id].r)>>1; if(r <= mid) update(l, r, val, L(id)); else if(mid < l) update(l, r, val, R(id)); else{ update(l, mid, val, L(id)); update(mid+1, r, val, R(id)); } up(id); } void query(int l, int r, int id){ if(l == t[id].l && r == t[id].r){ Min = min(Min, t[id].min); Max = max(Max, t[id].max); return; } down(id); int mid = (t[id].l + t[id].r)>>1; if(r <= mid) query(l, r, L(id)); else if(mid < l) query(l, r, R(id)); else{ query(l, mid, L(id)); query(mid+1, r, R(id)); } } public void Q(int l, int r){ Max = -inf; Min = inf; query(l, r, 1); } public void P(int l, int r, int val){ update(l, r, val, 1); } } class Two_Dimension_Segment_Tree{ class Node{ int l, r; Node(){} Node(int l, int r){ this.l = l; this.r = r; } } Node[] t = new Node[N<<2]; Segment_Tree[] T = new Segment_Tree[N]; int Max, Min, M; int L(int x){return x<<1;} int R(int x){return x<<1|1;} void build(int l, int r, int id){ t[id] = new Node(l, r); // System.out.println(l+" "+r); if(l == r){ T[l] = new Segment_Tree(); T[l].pos = l; T[l].build(1, M, 1); return ; } int mid = (l+r)>>1; build(l, mid, L(id)); build(mid+1, r, R(id)); } void update(int l, int r, int x, int y, int val, int id){ if(l == r){ T[l].P(x, y, val); return ; } int mid = (t[id].l + t[id].r)>>1; if(r <= mid) update(l, r, x, y, val, L(id)); else if(mid < l) update(l, r, x, y, val, R(id)); else{ update(l, mid, x, y, val, L(id)); update(mid+1, r, x, y, val, R(id)); } } void query(int l, int r, int x, int y, int id){ if(l == r){ T[l].Q(x, y); Max = max(Max, T[l].Max); Min = min(Min, T[l].Min); return; } int mid = (t[id].l + t[id].r)>>1; if(r <= mid) query(l, r, x, y, L(id)); else if(mid < l) query(l, r, x, y, R(id)); else{ query(l, mid, x, y, L(id)); query(mid+1, r, x, y, R(id)); } } void Q(int l, int r, int x, int y){ Max = -inf; Min = inf; query(l, r, x, y, 1); } void P(int l, int r, int x, int y, int val){ update(l, r, x, y, val, 1); } } int n, m; Two_Dimension_Segment_Tree tree = new Two_Dimension_Segment_Tree(); void input(){ n = cin.nextInt(); m = cin.nextInt(); for(int i = 1; i <= n; i++) for(int j = 1; j <= m; j++)a[i][j] = cin.nextInt(); } void work() { input(); tree.M = m; tree.build(1, n, 1); int q; q = cin.nextInt(); String s; int l, r, x, y, val; while(q-- > 0){ s = cin.next(); if(s.charAt(0) == 'q'){ l = cin.nextInt(); x = cin.nextInt(); r = cin.nextInt(); y =cin.nextInt(); tree.Q(l, r, x, y); out.println(tree.Max+" "+tree.Min); } else { x = cin.nextInt(); y = cin.nextInt(); val = cin.nextInt(); tree.P(x, x, y, y, val); } } } Main() { cin = new Scanner(System.in); out = new PrintWriter(System.out); } public static void main(String[] args) { Main e = new Main(); e.work(); out.close(); } public Scanner cin; public static PrintWriter out; class Queue { int[] queue = new int[100000]; int front, rear; void clear() { front = rear = 0; } boolean empty() { return front == rear; } int size() { return rear - front; } void push(int x) { queue[rear++] = x; } int top() { return queue[front]; } void pop() { front++; } } int max(int x, int y) { return x > y ? x : y; } int min(int x, int y) { return x < y ? x : y; } double max(double x, double y) { return x > y ? x : y; } double min(double x, double y) { return x < y ? x : y; } static double eps = 1e-8; double abs(double x) { return x > 0 ? x : -x; } boolean zero(double x) { return abs(x) < eps; } }
标签:
原文地址:http://blog.csdn.net/qq574857122/article/details/42321607