码迷,mamicode.com
首页 > 其他好文 > 详细

Uva 11297 Census 二维线段树

时间:2015-01-01 21:18:20      阅读:368      评论:0      收藏:0      [点我收藏+]

标签:

题目链接:点击打开链接

好久没发题解了,

第一维的线段树更新到底,叶子节点建一棵线段树。


#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<map>
#include<vector>
#include<set>
#include<string>
#include<algorithm>
using namespace std;
template <class T>
inline bool rd(T &ret) {
	char c; int sgn;
	if (c = getchar(), c == EOF) return 0;
	while (c != '-' && (c<'0' || c>'9')) c = getchar();
	sgn = (c == '-') ? -1 : 1;
	ret = (c == '-') ? 0 : (c - '0');
	while (c = getchar(), c >= '0'&&c <= '9') ret = ret * 10 + (c - '0');
	ret *= sgn;
	return 1;
}
template <class T>
inline void pt(T x) {
	if (x <0) {
		putchar('-');
		x = -x;
	}
	if (x>9) pt(x / 10);
	putchar(x % 10 + '0');
}
const int N = 550;
const int inf = 1000 * 1000 * 1000;
int a[N][N];
class Segment_Tree{
public:
	class Node{
	public:
		int l, r, max, min, lazy;
		Node(){}
		Node(int ll, int rr, int mmax, int mmin){
			l = ll; r = rr; max = mmax; min = mmin;
			lazy = inf;
		}
	};
	Node t[N << 2];
	int pos = 0, Max, Min;
	int L(int x){ return x << 1; }
	int R(int x){ return x << 1 | 1; }
	void up(int id){
		t[id].max = max(t[L(id)].max, t[R(id)].max);
		t[id].min = min(t[L(id)].min, t[R(id)].min);
		t[id].lazy = inf;
	}
	void down(int id){
		if (t[id].lazy != inf){
			t[L(id)].max = t[R(id)].max = t[id].lazy;
			t[L(id)].min = t[R(id)].min = t[id].lazy;
			t[L(id)].lazy = t[R(id)].lazy = t[id].lazy;
			t[id].lazy = inf;
		}
	}
	void build(int l, int r, int id){
		t[id] = Node(l, r, 0, 0);
		if (l == r){
			t[id].min = t[id].max = a[pos][l];
			return;
		}
		int mid = (l + r) >> 1;
		build(l, mid, L(id)); build(mid + 1, r, R(id));
		up(id);
	}
	void update(int l, int r, int val, int id){
		if (l == t[id].l && r == t[id].r){
			t[id].max = t[id].min = t[id].lazy = val;
			return;
		}
		down(id);
		int mid = (t[id].l + t[id].r) >> 1;
		if (r <= mid)
			update(l, r, val, L(id));
		else if (mid < l)
			update(l, r, val, R(id));
		else{
			update(l, mid, val, L(id));
			update(mid + 1, r, val, R(id));
		}
		up(id);
	}
	void query(int l, int r, int id){
		if (l == t[id].l && r == t[id].r){
			Min = min(Min, t[id].min);
			Max = max(Max, t[id].max);
			return;
		}
		down(id);
		int mid = (t[id].l + t[id].r) >> 1;
		if (r <= mid)
			query(l, r, L(id));
		else if (mid < l)
			query(l, r, R(id));
		else{
			query(l, mid, L(id));
			query(mid + 1, r, R(id));
		}
	}
	void Q(int l, int r){
		Max = -inf; Min = inf;
		query(l, r, 1);
	}
	void P(int l, int r, int val){
		update(l, r, val, 1);
	}
};
class Two_Dimension_Segment_Tree{
public:
	class Node{
	public:
		int l, r;
		Node(){}
		Node(int ll, int rr){
			l = ll; r = rr;
		}
	};
	Node t[N << 2];
	Segment_Tree T[N];
	int Max, Min, M;
	int L(int x){ return x << 1; }
	int R(int x){ return x << 1 | 1; }

	void build(int l, int r, int id){
		t[id] = Node(l, r);
		if (l == r){
			T[l].pos = l;
			T[l].build(1, M, 1);
			return;
		}
		int mid = (l + r) >> 1;
		build(l, mid, L(id)); build(mid + 1, r, R(id));
	}
	void update(int l, int r, int x, int y, int val, int id){
		if (l == r){
			T[l].P(x, y, val);
			return;
		}
		int mid = (t[id].l + t[id].r) >> 1;
		if (r <= mid)
			update(l, r, x, y, val, L(id));
		else if (mid < l)
			update(l, r, x, y, val, R(id));
		else{
			update(l, mid, x, y, val, L(id));
			update(mid + 1, r, x, y, val, R(id));
		}
	}
	void query(int l, int r, int x, int y, int id){
		if (l == r){
			T[l].Q(x, y);
			Max = max(Max, T[l].Max);
			Min = min(Min, T[l].Min);
			return;
		}
		int mid = (t[id].l + t[id].r) >> 1;
		if (r <= mid)
			query(l, r, x, y, L(id));
		else if (mid < l)
			query(l, r, x, y, R(id));
		else{
			query(l, mid, x, y, L(id));
			query(mid + 1, r, x, y, R(id));
		}
	}
	void Q(int l, int r, int x, int y){
		Max = -inf; Min = inf;
		query(l, r, x, y, 1);
	}
	void P(int l, int r, int x, int y, int val){
		update(l, r, x, y, val, 1);
	}
};
int n, m;
Two_Dimension_Segment_Tree tree;
void input(){
	rd(n); rd(m);
	for (int i = 1; i <= n; i++)
	for (int j = 1; j <= m; j++)rd(a[i][j]);
}
int main(){
	input();
	tree.M = m;
	tree.build(1, n, 1);
	int q; rd(q);
	string s; int l, r, x, y, val;
	while (q-- > 0){
		cin >> s;
		if (s[0] == 'q'){
			rd(l); rd(x); rd(r); rd(y);
			tree.Q(l, r, x, y);
			printf("%d %d\n", tree.Max, tree.Min);
		}
		else {
			rd(x); rd(y); rd(val);
			tree.P(x, x, y, y, val);
		}
	}
	return 0;
}

java:

import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.Iterator;
import java.util.Scanner;
import java.util.TreeSet;

public class Main {
	static int N = 550;
	static int inf = 1000*1000*1000;
	int[][] a = new int[N][N];
	class Segment_Tree{
		class Node{
			int l, r, max, min, lazy;
			Node(){}
			Node(int l, int r, int max, int min){
				this.l = l; this.r = r; this.max = max; this.min = min;
				lazy = inf;
			}
		}
		public Node[] t = new Node[N<<2];
		public int pos = 0, Max, Min;
		int L(int x){return x<<1;}
		int R(int x){return x<<1|1;}
		void up(int id){
			t[id].max = max(t[L(id)].max, t[R(id)].max);
			t[id].min = min(t[L(id)].min, t[R(id)].min);
			t[id].lazy = inf;
		}
		void down(int id){
			if(t[id].lazy != inf){
				t[L(id)].max = t[R(id)].max = t[id].lazy;
				t[L(id)].min = t[R(id)].min = t[id].lazy;
				t[L(id)].lazy = t[R(id)].lazy = t[id].lazy;
				t[id].lazy = inf;
			}
		}
		public void build(int l, int r, int id){
			t[id] = new Node(l, r, 0, 0);
			if(l == r){
				t[id].min = t[id].max = a[pos][l];
				return ;
			}
			int mid = (l+r)>>1;
			build(l, mid, L(id)); build(mid+1, r, R(id));
			up(id);
		}
		void update(int l, int r, int val, int id){
			if(l == t[id].l && r == t[id].r){
				t[id].max = t[id].min = t[id].lazy = val;
				return ;
			}
			down(id);
			int mid = (t[id].l + t[id].r)>>1;
			if(r <= mid)
				update(l, r, val, L(id));
			else if(mid < l)
				update(l, r, val, R(id));
			else{
				update(l, mid, val, L(id));
				update(mid+1, r, val, R(id));
			}
			up(id);
		}
		void query(int l, int r, int id){
			if(l == t[id].l && r == t[id].r){
				Min = min(Min, t[id].min);
				Max = max(Max, t[id].max);
				return;
			}
			down(id);
			int mid = (t[id].l + t[id].r)>>1;
			if(r <= mid)
				query(l, r, L(id));
			else if(mid < l)
				query(l, r, R(id));
			else{
				query(l, mid, L(id));
				query(mid+1, r, R(id));
			}
		}
		public void Q(int l, int r){
			Max = -inf; Min = inf;
			query(l, r, 1);
		}
		public void P(int l, int r, int val){
			update(l, r, val, 1);
		}
	}
	class Two_Dimension_Segment_Tree{		
		class Node{
			int l, r;
			Node(){}
			Node(int l, int r){
				this.l = l; this.r = r;
			}
		}
		Node[] t = new Node[N<<2];
		Segment_Tree[] T = new Segment_Tree[N];
		int Max, Min, M;
		int L(int x){return x<<1;}
		int R(int x){return x<<1|1;}
		
		void build(int l, int r, int id){
			t[id] = new Node(l, r);
	//		System.out.println(l+" "+r);
			if(l == r){
				T[l] = new Segment_Tree();
				T[l].pos = l;
				T[l].build(1, M, 1);
				return ;
			}
			int mid = (l+r)>>1;
			build(l, mid, L(id)); build(mid+1, r, R(id));
		}
		void update(int l, int r, int x, int y, int val, int id){
			if(l == r){
				T[l].P(x, y, val);
				return ;
			}
			int mid = (t[id].l + t[id].r)>>1;
			if(r <= mid)
				update(l, r, x, y, val, L(id));
			else if(mid < l)
				update(l, r, x, y, val, R(id));
			else{
				update(l, mid, x, y, val, L(id));
				update(mid+1, r, x, y, val, R(id));
			}
		}
		void query(int l, int r, int x, int y, int id){
			if(l == r){
				T[l].Q(x, y);				
				Max = max(Max, T[l].Max);
				Min = min(Min, T[l].Min);
				return;
			}
			int mid = (t[id].l + t[id].r)>>1;
			if(r <= mid)
				query(l, r, x, y, L(id));
			else if(mid < l)
				query(l, r, x, y, R(id));
			else{
				query(l, mid, x, y, L(id));
				query(mid+1, r, x, y, R(id));
			}
		}
		void Q(int l, int r, int x, int y){
			Max = -inf; Min = inf;
			query(l, r, x, y, 1);
		}
		void P(int l, int r, int x, int y, int val){
			update(l, r, x, y, val, 1);
		}
	}
	int n, m;
	Two_Dimension_Segment_Tree tree = new Two_Dimension_Segment_Tree();
	void input(){
		n = cin.nextInt(); m = cin.nextInt();
		for(int i = 1; i <= n; i++)
			for(int j = 1; j <= m; j++)a[i][j] = cin.nextInt();		
	}
	void work() {
		input();
		tree.M = m;
		tree.build(1, n, 1);
		int q; q = cin.nextInt();
		String s; int l, r, x, y, val;
		while(q-- > 0){
			s = cin.next();
			if(s.charAt(0) == 'q'){
				l = cin.nextInt(); x = cin.nextInt(); r = cin.nextInt(); y =cin.nextInt();
				tree.Q(l, r, x, y);
				out.println(tree.Max+" "+tree.Min);
			}
			else {
				x = cin.nextInt(); y = cin.nextInt(); val = cin.nextInt();
				tree.P(x, x, y, y, val);
			}
		}
	}

	Main() {
		cin = new Scanner(System.in);
		out = new PrintWriter(System.out);
	}

	public static void main(String[] args) {
		Main e = new Main();
		e.work();
		out.close();
	}

	public Scanner cin;
	public static PrintWriter out;

	class Queue {
		int[] queue = new int[100000];
		int front, rear;

		void clear() {
			front = rear = 0;
		}

		boolean empty() {
			return front == rear;
		}

		int size() {
			return rear - front;
		}

		void push(int x) {
			queue[rear++] = x;
		}

		int top() {
			return queue[front];
		}

		void pop() {
			front++;
		}
	}
	int max(int x, int y) {
		return x > y ? x : y;
	}

	int min(int x, int y) {
		return x < y ? x : y;
	}
	double max(double x, double y) {
		return x > y ? x : y;
	}

	double min(double x, double y) {
		return x < y ? x : y;
	}

	static double eps = 1e-8;

	double abs(double x) {
		return x > 0 ? x : -x;
	}

	boolean zero(double x) {
		return abs(x) < eps;
	}
}


Uva 11297 Census 二维线段树

标签:

原文地址:http://blog.csdn.net/qq574857122/article/details/42321607

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!