标签:
Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.)
You have the following 3 operations permitted on a word:
a) Insert a character
b) Delete a character
c) Replace a character
1. d[0, j] = j;
2. d[i, 0] = i;
3. d[i, j] = d[i-1, j - 1] if A[i] == B[j]
4. d[i, j] = min(d[i-1, j - 1], d[i, j - 1], d[i-1, j]) + 1 if A[i] != B[j]
1 class Solution { 2 public: 3 int minDistance(string word1, string word2) { 4 5 int n1=word1.length(); 6 int n2=word2.length(); 7 8 if(n1==0) return n2; 9 if(n2==0) return n1; 10 11 //采用二维数组效率更高 12 //vector<vector<int> > dp(n1+1,vector<int>(n2+1)); 13 14 int **dp=new int*[n1+1]; 15 for(int i=0;i<n1+1;i++) 16 { 17 dp[i]=new int[n2+1]; 18 } 19 20 21 dp[0][0]=0; 22 for(int i=1;i<=n1;i++) 23 { 24 dp[i][0]=i; 25 } 26 for(int j=1;j<=n2;j++) 27 { 28 dp[0][j]=j; 29 } 30 31 for(int i=1;i<=n1;i++) 32 { 33 for(int j=1;j<=n2;j++) 34 { 35 36 if(word1[i-1]==word2[j-1]) 37 { 38 dp[i][j]=dp[i-1][j-1]; 39 } 40 else 41 { 42 dp[i][j]=min(dp[i-1][j],min(dp[i][j-1],dp[i-1][j-1]))+1; 43 } 44 } 45 } 46 47 int result=dp[n1][n2]; 48 for(int i=0;i<n1+1;i++) 49 { 50 delete[] dp[i]; 51 } 52 53 return result; 54 } 55 };
标签:
原文地址:http://www.cnblogs.com/reachteam/p/4199606.html