标签:style class c blog code java
本文中的过程演示如何使用 lambda 表达式。 Lambda Expressions in C++.‘ data-guid="411656d77b666e51e15caac8de528191">有关 lambda 表达式的概述,请参见 C++ 中的 Lambda 表达式。 Lambda Expression Syntax.‘ data-guid="df40a218a0617e5e01e20ad28527a334">有关 lambda 表达式结构的更多信息,请参见 Lambda 表达式语法。
示例 1
auto variable or to a function object, as shown here:‘ data-guid="1577825cd5d19173efd8f1e355f35723">由于类型化 lambda 表达式,您可以分配给 auto 变量或到 函数 对象,如下所示:
// declaring_lambda_expressions1.cpp // compile with: /EHsc /W4 #include <functional> #include <iostream> int main() { using namespace std; // Assign the lambda expression that adds two numbers to an auto variable. auto f1 = [](int x, int y) { return x + y; }; cout << f1(2, 3) << endl; // Assign the same lambda expression to a function object. function<int(int, int)> f2 = [](int x, int y) { return x + y; }; cout << f2(3, 4) << endl; }
输出:
5 7
auto Keyword (Type Deduction), function Class, and Function Call (C++).‘ data-guid="3903935d9332805dcc459d05b80ac671">有关更多信息,请参见auto 关键字(类型推导)、function 类和函数调用 (C++)。
尽管 lambda 表达式多在方法或函数体中声明,但是也可以在初始化变量的任何地方声明。
Visual C++ 编译器将一个 lambda 表达式绑定到其捕获的变量上(在声明该表达式而不是调用该表达式时)。 i by value and the local variable j by reference.‘ data-guid="ae2a9811c3099b634644e9de2eb1a32c">以下示例显示 lambda 表达式,通过值捕获本地变量的 i,并通过引用捕获本地变量的 j。 i by value, the reassignment of i later in the program does not affect the result of the expression.‘ data-guid="001eae44beca4c2412a9663c53ea0600">因为 lambda 表达式通过值捕获 i ,因此 在该程序后面内容中的 i 的重新分配不影响该表达式的结果。 j by reference, the reassignment of j does affect the result of the expression.‘ data-guid="fcca7abac381912ac210a393971be713">但是,因为 lambda 表达式用引用捕获 j,j 的重新分配确实影响该表达式的结果。
// declaring_lambda_expressions2.cpp // compile with: /EHsc /W4 #include <functional> #include <iostream> int main() { using namespace std; int i = 3; int j = 5; // The following lambda expression captures i by value and // j by reference. function<int (void)> f = [i, &j] { return i + j; }; // Change the values of i and j. i = 22; j = 44; // Call f and print its result. cout << f() << endl; }
输出:
47
5 and 4:‘ data-guid="ca4f2c76fc5980eda2b5bfaa0897c0b9">此示例声明返回两个整数的总和并立即调用表达式。5 和 4参数的 lambda 表达式:
// calling_lambda_expressions1.cpp // compile with: /EHsc #include <iostream> int main() { using namespace std; int n = [] (int x, int y) { return x + y; }(5, 4); cout << n << endl; }
输出:
1 |
9 |
此示例将 lambda 表达式作为参数传递给 find_if 函数。 true if its parameter is an even number.‘ data-guid="8cc7cbba81fed90d3d66fd4ef07d997b">如果其参数是偶数,则 lambda 表达式返回 true。
// calling_lambda_expressions2.cpp // compile with: /EHsc /W4 #include <list> #include <algorithm> #include <iostream> int main() { using namespace std; // Create a list of integers with a few initial elements. list<int> numbers; numbers.push_back(13); numbers.push_back(17); numbers.push_back(42); numbers.push_back(46); numbers.push_back(99); // Use the find_if function and a lambda expression to find the // first even number in the list. const list<int>::const_iterator result = find_if(numbers.begin(), numbers.end(),[](int n) { return (n % 2) == 0; }); // Print the result. if (result != numbers.end()) { cout << "The first even number in the list is " << *result << "." << endl; } else { cout << "The list contains no even numbers." << endl; } }
输出:
The first even number in the list is 42.
find_if function, see find_if.‘ data-guid="501b648c3832eabd14d0c7c14634a5df">有关 find_if 函数的详细信息,请参阅 find_if。 <algorithm>.‘ data-guid="fa3cf021a4ea936a605a17c2734ca16a">有关执行常规算法 STL 的函数的更多信息,请参见 <algorithm>。
如下例所示,可以嵌套在另一个中的 lambda 表达式。 内部 lambda 表达式将其参数与 2 相乘并返回结果。 外部 lambda 表达式调用其参数的内部 lambda 表达式并将 3 添加到结果。
// nesting_lambda_expressions.cpp // compile with: /EHsc /W4 #include <iostream> int main() { using namespace std; // The following lambda expression contains a nested lambda // expression. int timestwoplusthree = [](int x) { return [](int y) { return y * 2; }(x) + 3; }(5); // Print the result. cout << timestwoplusthree << endl; }
输出:
1 |
|
[](int y) { return y * 2; } is the nested lambda expression.‘ data-guid="760f7cd14b0f80619332d0a093fa501e">在此示例中, [](int y) { return y * 2; } 是嵌套 lambda 表达式。
go to top]‘ data-guid="2934928600bb899d29088b7c7f46566a">
higher-order function. A higher-order function is a lambda expression that takes another lambda expression as its argument or returns a lambda expression.‘ data-guid="1bd82b51cb4e4c98b92d0d0a38f1a215">许多编程语言支持一个高阶函数的概念。一个高阶函数是包含其他 lambda 表达式作为参数或返回 lambda 表达式的 lambda 表达式。 function class to enable a C++ lambda expression to behave like a higher-order function.‘ data-guid="39f0d4ab7927a8ae206c39bad9ed603a">可以使用 函数 类使 C.C++ Lambda 表达式的行为像高阶函数。 下面的示例演示返回 function 对象和 lambda 表达式采用 function 对象作为其参数的 Lambda 表达式。
// higher_order_lambda_expression.cpp // compile with: /EHsc /W4 #include <iostream> #include <functional> int main() { using namespace std; // The following code declares a lambda expression that returns // another lambda expression that adds two numbers. // The returned lambda expression captures parameter x by value. auto addtwointegers = [](int x) -> function<int(int)> { return [=](int y) { return x + y; }; }; // The following code declares a lambda expression that takes another // lambda expression as its argument. // The lambda expression applies the argument z to the function f // and multiplies by 2. auto higherorder = [](const function<int(int)>& f, int z) { return f(z) * 2; }; // Call the lambda expression that is bound to higherorder. auto answer = higherorder(addtwointegers(7), 8); // Print the result, which is (7+8)*2. cout << answer << endl; }
输出:
1 |
|
可以将 lambda 表达式用于类方法的主体中。 lambda 表达式可以访问该封闭方法可以访问的任何方法或数据成员。 this pointer to provide access to methods and data members of the enclosing class.‘ data-guid="49468aa028648e6fc0357b8af42cb6eb">您可以显式或隐式捕获 this 指针,以提供对封闭类的方法和数据成员的访问路径。
this pointer explicitly in a method, as shown here:‘ data-guid="b5f11525161d32cb8f8c5719739edce5">在方法可以显式使用 this 指针,如下所示:
void ApplyScale(const vector<int>& v) const { for_each(v.begin(), v.end(), [this](int n) { cout << n * _scale << endl; }); }
您可隐式也捕获 this 指针:
void ApplyScale(const vector<int>& v) const { for_each(v.begin(), v.end(), [=](int n) { cout << n * _scale << endl; }); }
以下示例显示了封装范围值的 Scale 类。
// method_lambda_expression.cpp // compile with: /EHsc /W4 #include <algorithm> #include <iostream> #include <vector> using namespace std; class Scale { public: // The constructor. explicit Scale(int scale) : _scale(scale) {} // Prints the product of each element in a vector object // and the scale value to the console. void ApplyScale(const vector<int>& v) const { for_each(v.begin(), v.end(), [=](int n) { cout << n * _scale << endl; }); } private: int _scale; }; int main() { vector<int> values; values.push_back(1); values.push_back(2); values.push_back(3); values.push_back(4); // Create a Scale object that scales elements by 3 and apply // it to the vector object. Does not modify the vector. Scale s(3); s.ApplyScale(values); }
输出:
1
2
3
4 |
3 6 9 12 |
ApplyScale method uses a lambda expression to print the product of the scale value and each element in a vector object.‘ data-guid="ad06e679003829862b8b91e8d6eafd75">ApplyScale 方法使用 lambda 表达式打印宽度值和每个产品。vector 对象。 this so that it can access the _scale member.‘ data-guid="b9a1c08ccaad311df5aaca1be182daee">lambda 表达式隐式捕获 this,以便能够访问 _scale 成员。
由于键入 lambda 表达式,因此您可以将它们与 C++ 模板一起使用。 negate_all and print_all functions.‘ data-guid="b6018b36b33163ed9c1104695444ff64">下面的示例显示 negate_all 和 print_all 函数。 negate_all function applies the unary operator- to each element in the vector object.‘ data-guid="b17c5ab9fd17f0c55d3deb6d75a64f29">negate_all 函数把一元 operator- 应用到 vector 对象中的每个元素上。 print_all function prints each element in the vector object to the console.‘ data-guid="00137aabad6b70f7628173e82fb5cc11">print_all 函数打印vector 对象中的每个元素到控制台。
// template_lambda_expression.cpp // compile with: /EHsc #include <vector> #include <algorithm> #include <iostream> using namespace std; // Negates each element in the vector object. Assumes signed data type. template <typename T> void negate_all(vector<T>& v) { for_each(v.begin(), v.end(), [](T& n) { n = -n; }); } // Prints to the console each element in the vector object. template <typename T> void print_all(const vector<T>& v) { for_each(v.begin(), v.end(), [](const T& n) { cout << n << endl; }); } int main() { // Create a vector of signed integers with a few elements. vector<int> v; v.push_back(34); v.push_back(-43); v.push_back(56); print_all(v); negate_all(v); cout << "After negate_all():" << endl; print_all(v); }
输出:
34 -43 56 After negate_all(): -34 43 -56
Templates.‘ data-guid="b28118192a5fefdc3e7784bc749a4316">有关 C++ 模板的更多信息,请参见 模板。
lambda 表达式的主体遵循两个规则结构化异常处理 (SEH) 和 C++ 异常处理。 可以在 lambda 表达式主体中处理引发的异常或将异常处理延迟至封闭作用域。 下面的示例使用 for_each 函数和 lambda 表达式用另一种值的 vector 对象。 try/catch block to handle invalid access to the first vector.‘ data-guid="3728188f8e545dc738a2bfd8b9191827">使用一个 try/catch 块处理到第一个矢量的无效访问。
// eh_lambda_expression.cpp // compile with: /EHsc /W4 #include <vector> #include <algorithm> #include <iostream> using namespace std; int main() { // Create a vector that contains 3 elements. vector<int> elements(3); // Create another vector that contains index values. vector<int> indices(3); indices[0] = 0; indices[1] = -1; // This is not a valid subscript. It will trigger an exception. indices[2] = 2; // Use the values from the vector of index values to // fill the elements vector. This example uses a // try/catch block to handle invalid access to the // elements vector. try { for_each(indices.begin(), indices.end(), [&](int index) { elements.at(index) = index; }); } catch (const out_of_range& e) { cerr << "Caught ‘" << e.what() << "‘." << endl; }; }
输出:
1 |
Caught ‘invalid vector<T> subscript‘ . |
Exception Handling in Visual C++.‘ data-guid="01495aa04d6415029313c880f6d94fb4">有关异常处理的更多信息,请参见Visual C++ 中的异常处理。
go to top]‘ data-guid="2934928600bb899d29088b7c7f46566a">[转到页首]
lambda 表达式捕获的子句不能包含具有托管类型的变量。 但是,可以将具有托管类型为 lambda 表达式的参数列表的参数。 ch by value and takes a System.String object as its parameter.‘ data-guid="122c34491af6f1c15685358efbde1b0d">下面的示例由包含值捕获本地非托管 ch 变量并采用 System.String 对象作为其参数的 Lambda 表达式。
// managed_lambda_expression.cpp // compile with: /clr using namespace System; int main() { char ch = ‘!‘; // a local unmanaged variable // The following lambda expression captures local variables // by value and takes a managed String object as its parameter. [=](String ^s) { Console::WriteLine(s + Convert::ToChar(ch)); }("Hello"); }
输出:
1 |
Hello! |
标签:style class c blog code java
原文地址:http://www.cnblogs.com/wuchanming/p/3747931.html