码迷,mamicode.com
首页 > 其他好文 > 详细

bzoj 1914: [Usaco2010 OPen]Triangle Counting 数三角形 容斥

时间:2015-01-04 16:51:02      阅读:159      评论:0      收藏:0      [点我收藏+]

标签:

1914: [Usaco2010 OPen]Triangle Counting 数三角形

Time Limit: 10 Sec  Memory Limit: 64 MB
Submit: 272  Solved: 143
[Submit][Status]

Description

在 一只大灰狼偷偷潜入Farmer Don的牛群被群牛发现后,贝西现在不得不履行着她站岗的职责。从她的守卫塔向下瞭望简直就是一件烦透了的事情。她决定做一些开发智力的小练习,防止她睡 着了。想象牧场是一个X,Y平面的网格。她将N只奶牛标记为1…N (1 <= N <= 100,000),每只奶牛的坐标为X_i,Y_i (-100,000 <= X_i <= 100,000;-100,000 <= Y_i <= 100,000; 1 <= i <=N)。然后她脑海里想象着所有可能由奶牛构成的三角形。如果一个三角形完全包含了原点(0,0),那么她称这个三角形为“黄金三角形”。原点不 会落在任何一对奶牛的连线上。另外,不会有奶牛在原点。给出奶牛的坐标,计算出有多少个“黄金三角形”。顺便解释一下样例,考虑五只牛,坐标分别为 (-5,0), (0,2), (11,2), (-11,-6), (11,-5)。下图是由贝西视角所绘出的图示。 技术分享

Input

第一行:一个整数: N 第2到第N+1行: 每行两个整数X_i,Y_i,表示每只牛的坐标

Output

* 第一行: 一行包括一个整数,表示“黄金三角形的数量”

Sample Input

5
-5 0
0 2
11 2
-11 -6
11 -5



Sample Output

5

HINT

Source

 

  这道题容易出问题的地方一点就是由于有一步整体乘2导致数组开小了,另一点是关于三点共线,这个问题想了很久结果发现其实容斥中已经自动排除掉这种情况了。另外顺便提一下,atan(x) -> [-pi/2,pi/2)

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
#define MAXN 200010
#define inf 1e1000
#define PI 3.1415926535897832
const double pi=PI;
double h[MAXN];
int main()
{
        freopen("input.txt","r",stdin);
        int i,j,k;
        int n,x,y;
        scanf("%d",&n);
        for (i=0;i<n;i++)
        {
                scanf("%d%d",&x,&y);
                double a;
                if (x)a=(double)y/x;
                else if (x>0)a=(double)inf;
                else a=-inf;
                h[i]=atan(a);
                if (x<0 || (x==0 && y>0))h[i]+=PI;
                h[i+n]=h[i]+PI*2;
        }
        long long ans=(long long)n*(n-1)*(n-2)/6;
        n*=2;
        sort(h,h+n);
        for (i=0;i*2<n;i++)
        {
                x=upper_bound(h+i,h+n,h[i]+PI)-h-i;;
                x--;
                ans-=(long long)x*(x-1)/2;
        }
        printf("%lld\n",ans);
        return 0;
}

 

bzoj 1914: [Usaco2010 OPen]Triangle Counting 数三角形 容斥

标签:

原文地址:http://www.cnblogs.com/mhy12345/p/4201262.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!