标签:
A robot is located at the top-left corner of a m x n grid (marked ‘Start‘ in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked ‘Finish‘ in the diagram below).
How many possible unique paths are there?
Above is a 3 x 7 grid. How many possible unique paths are there?
Note: m and n will be at most 100.
1 class Solution { 2 public: 3 4 int uniquePaths(int m, int n) { 5 6 int result=0; 7 double tmp=1; 8 m--; 9 n--; 10 for(int i=0;i<n;i++) 11 { 12 tmp*=(double)(m)/(i+1)+1; 13 } 14 15 result=round(tmp); 16 return result; 17 } 18 };
1 class Solution { 2 public: 3 4 int uniquePaths(int m, int n) { 5 6 if(m==0||n==0) return 0; 7 8 int dp[101][101]; 9 10 dp[0][0]=1; 11 12 for(int i=1;i<m;i++) 13 { 14 dp[i][0]=1; 15 } 16 17 for(int j=1;j<n;j++) 18 { 19 dp[0][j]=1; 20 } 21 22 for(int i=1;i<m;i++) 23 { 24 for(int j=1;j<n;j++) 25 { 26 dp[i][j]=dp[i][j-1]+dp[i-1][j]; 27 } 28 } 29 return dp[m-1][n-1]; 30 } 31 };
标签:
原文地址:http://www.cnblogs.com/reachteam/p/4202461.html