标签:
The set [1,2,3,…,n]
contains a total of n! unique permutations.
By listing and labeling all of the permutations in order,
We get the following sequence (ie, for n = 3):
"123"
"132"
"213"
"231"
"312"
"321"
Given n and k, return the kth permutation sequence.
Note: Given n will be between 1 and 9 inclusive.
思路:给定序号找排列的字符串,肯定不用一个一个求,根据序号来判断每一位上的数字。用一个向量存储 0~n-1的阶乘,用另一个向量vec从小到大存1~n数字, 求第k位的话,我们用k-1(转为从0开始), 除以(n-1)! 其整数部分就是该位数字在vec的序号。之后在vec中删掉该数字,k2 %= (n-1)! 以此类推
class Solution { public: string getPermutation(int n, int k) { vector<int> factorial(n, 1); vector<int> vec(n, 1); string ans; for(int i = 1; i < n; i++) { factorial[i] = factorial[i - 1] * i; vec[i] = i + 1; } if(k > factorial[n - 1] * n) return ans; int k2 = k - 1; for(int i = n - 1; i >= 0; i--) { int cur = k2 / factorial[i]; char c[2]; c[0] = ‘0‘ + vec[cur]; c[1] = ‘\0‘; ans.append(c); vec.erase(vec.begin() + cur); k2 = k2 % factorial[i]; } return ans; } };
【leetcode】 Permutation Sequence (middle)
标签:
原文地址:http://www.cnblogs.com/dplearning/p/4204608.html