标签:
求连通块
Time Limit: 1sec Memory Limit:256MB
Description
输入一个简单无向图,求出图中连通块的数目。
Input
输入的第一行包含两个整数n和m,n是图的顶点数,m是边数。1<=n<=100,0<=m<=10000。
以下m行,每行是一个数对u v,表示存在边(u,v)。顶点编号从1开始。
Output
单独一行输出连通块的数目。
Sample Input
5 3
1 2
1 3
2 4
Sample Output
2
这个题目很简单,我们时需要对整个图运用深度优先搜索。因为深度优先搜索算法需要保证每个顶点都被访问,所以他是依次访问各个独立的块的。因此,我们可以简化搜索算法,同时在里面加入一行统计次数的代码即可。
《算法导论》22章,图的基本算法,深度优先搜索。
DFS(G)
For each vetex u in V[G]
Do color[u] = white
For each vetex u in V[G]
Do if clolor[u] is white
Then DFS-VISIT(u)
DFS-VISIT(u)
Color[u] = gray
For each v in u’s neighbor
If color[v] == white
Then DFS-VISIT(v)
Color[u] = black
#include <stdio.h> #include <malloc.h> #include <queue> using std::queue; const int MAX = 100; typedef enum color { white = 0, gray = 1, black = 2 } color; typedef struct node { int data; node * next; color c; } node; bool DFS_Visit(node *G[MAX], int s, int n); int DFS_blocks(node *G[MAX], int n); node * tail(node * head); void print_G(node *G[MAX], int n); // for test void print_G(node *G[MAX], int n) { int i; node * travel; for(i = 0; i < n; i++) { travel = G[i]; printf("%d (color : %d)->", travel->data, travel->c); travel = travel->next; while(travel != NULL) { printf("%d->", travel->data); travel = travel->next; } printf("NULL\n"); } printf("\n"); } int DFS_blocks(node *G[MAX], int n) { int i; int res = 0; for(i = 0; i < n; i++) { G[i]->c = white; } for(i = 0; i <n; i++) { if(DFS_Visit(G, i, n)) res++; } return res; } bool DFS_Visit(node *G[MAX], int s, int n) { if(G[s]->c == black) return false; G[s]->c = gray; queue<node *> q; node * u; node * travel; q.push(G[s]); while(!q.empty()) { u = q.front(); q.pop(); travel = u->next; while(travel != NULL) { if(G[travel->data-1]->c == white) { G[travel->data-1]->c = gray; q.push(G[travel->data-1]); } travel = travel->next; } // print_G(G ,n); u->c = black; } return true; } node * tail(node * head) { node * travel = head; while(travel -> next != NULL) travel = travel->next; return travel; } int main() { int n; // vetrix shu int m; // bian shu int v; // ding dian a int u; // ding dian b int i; node *G[MAX]; node * temp1 = NULL; node * temp2 = NULL; scanf("%d %d", & n, &m); for(i = 0; i < n; i++) { G[i] = (node *)malloc(sizeof(node)); G[i]->data = i+1; G[i]->next = NULL; } for(i = 0; i < m; i++) { scanf("%d %d", &u, &v); temp1 = (node *)malloc(sizeof(node)); temp1->data = v; temp1->next = NULL; temp2 = (node *)malloc(sizeof(node)); temp2->data = u; temp2->next = NULL; tail(G[u-1])->next = temp1; tail(G[v-1])->next = temp2; } printf("%d\n", DFS_blocks(G, n)); return 0; }
参考:
《算法导论》22章
标签:
原文地址:http://my.oschina.net/yejq08/blog/364084