码迷,mamicode.com
首页 > 其他好文 > 详细

UVa 201 Squares

时间:2015-01-06 17:29:15      阅读:151      评论:0      收藏:0      [点我收藏+]

标签:

题意:

技术分享

给出这样一个图,求一共有多少个大小不同或位置不同的正方形。

分析:

这种题一看就有思路,最开始的想法就是枚举正方形的位置,需要二重循环,枚举边长一重循环,判断是否为正方形又需要一重循环,复杂度为O(n4),对于n≤9来说,这个复杂度可以接受。

可以像预处理前缀和那样,用O(1)的时间判断是否为正方形,这样总的复杂度就优化到O(n3)。

这个方法转自这里

We can think that vertical or horizontal lines are edges between two adjecent point. After that we can take a three dimensional array (say a [N][N][2]) to store the count of horizontal(a[i][j][0]) edges and vertical(a[i][j][1]) edges. a[i][j][0] contains number of horizontal edges at row i upto coloumn j. and a[i][j][1] contains number of vertical edges at coloumn j upto row i. Next you use a O(n^2) loop to find a square. a square of size 1 is found if there is an edge from (i,j) to (i,j+1) and (i,j+1) to (i+1,j+1) and (i,j) to (i+1,j) and (i+1,j) to (i+1,j+1) we can get this just by subtracting values calculated above.

举个例子,a[i][j][0]表示在第i行上,从第一列到第j列水平边数,如果a[i][j+l][0] - a[i][j][0],说明点(i, j)到(i, j+l)有一条长为l的水平线段。

我还被输入坑了,注意VH后面,哪个数代表行,哪个数代表列。

技术分享
 1 #include <cstdio>
 2 #include <cstring>
 3 
 4 const int maxn = 10;
 5 bool G[2][maxn][maxn];
 6 int a[2][maxn][maxn], cnt[maxn];
 7 
 8 int main()
 9 {
10     //freopen("in.txt", "r", stdin);
11     int n, m, kase = 0;
12     while(scanf("%d", &n) == 1 && n)
13     {
14         memset(G, false, sizeof(G));
15         memset(a, 0, sizeof(a));
16         memset(cnt, 0, sizeof(cnt));
17         scanf("%d", &m);
18         getchar();
19         for(int k = 0; k < m; ++k)
20         {
21             char c;
22             int i, j;
23             scanf("%c %d %d", &c, &i, &j);
24             getchar();
25             if(c == H) G[0][i][j+1] = true;
26             else G[1][j+1][i] = true;
27         }
28         for(int i = 1; i <= n; ++i)
29             for(int j = 1; j <= n; ++j)
30             {
31                 a[0][i][j] = a[0][i][j-1] + G[0][i][j];
32                 a[1][i][j] = a[1][i-1][j] + G[1][i][j];
33             }
34 
35         for(int i = 1; i < n; ++i)
36             for(int j = 1; j < n; ++j)  //枚举正方形的左上角
37                 for(int l = 1; i+l<=n && j+l<=n; ++l)   //枚举正方形的边长
38                     if(a[0][i][j+l]-a[0][i][j] == l && a[0][i+l][j+l]-a[0][i+l][j] == l
39                        && a[1][i+l][j]-a[1][i][j] == l && a[1][i+l][j+l]-a[1][i][j+l] == l)
40                         cnt[l]++;
41 
42         if(kase) printf("\n**********************************\n\n");
43         printf("Problem #%d\n\n", ++kase);
44         bool flag = false;
45         for(int i = 1; i <= n; ++i) if(cnt[i])
46         {
47             printf("%d square (s) of size %d\n", cnt[i], i);
48             flag = true;
49         }
50         if(!flag) puts("No completed squares can be found.");
51     }
52 
53     return 0;
54 }
代码君

 

UVa 201 Squares

标签:

原文地址:http://www.cnblogs.com/AOQNRMGYXLMV/p/4206130.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!