标签:storm
上一篇写了 storm运行异常之No output fields defined for component:stream XxxBolt:null 发现是多线程导致的,但是也有可能是其他原因,今天就来追踪一下。
错误log:
Caused by: java.lang.IllegalArgumentException: No output fields defined for component:stream XxxBolt:null at backtype.storm.task.GeneralTopologyContext.getComponentOutputFields(GeneralTopologyContext.java:113) ~[storm-core-0.9.3-rc1.jar:0.9.3-rc1] at backtype.storm.tuple.TupleImpl.<init>(TupleImpl.java:53) ~[storm-core-0.9.3-rc1.jar:0.9.3-rc1] at backtype.storm.serialization.KryoTupleDeserializer.deserialize(KryoTupleDeserializer.java:54) ~[storm-core-0.9.3-rc1.jar:0.9.3-rc1] at backtype.storm.daemon.executor$mk_task_receiver$fn__4244.invoke(executor.clj:397) ~[storm-core-0.9.3-rc1.jar:0.9.3-rc1] at backtype.storm.disruptor$clojure_handler$reify__1668.onEvent(disruptor.clj:59) ~[storm-core-0.9.3-rc1.jar:0.9.3-rc1] at backtype.storm.utils.DisruptorQueue.consumeBatchToCursor(DisruptorQueue.java:124) ~[storm-core-0.9.3-rc1.jar:0.9.3-rc1] ... 6 common frames omitted
/** * Gets the declared output fields for the specified component/stream. */ public Fields getComponentOutputFields(String componentId, String streamId) { Fields ret = _componentToStreamToFields.get(componentId).get(streamId); if(ret==null) { throw new IllegalArgumentException("No output fields defined for component:stream " + componentId + ":" + streamId); } return ret; }
继续观察错误stack,发现是executor.clj 的 mk_task_receiver 调用出错。来看看这个方法:
(defn mk-task-receiver [executor-data tuple-action-fn] (let [^KryoTupleDeserializer deserializer (:deserializer executor-data) task-ids (:task-ids executor-data) debug? (= true (-> executor-data :storm-conf (get TOPOLOGY-DEBUG))) ] (disruptor/clojure-handler (fn [tuple-batch sequence-id end-of-batch?] (fast-list-iter [[task-id msg] tuple-batch] (let [^TupleImpl tuple (if (instance? Tuple msg) msg (.deserialize deserializer msg))] (when debug? (log-message "Processing received message " tuple)) (if task-id (tuple-action-fn task-id tuple) ;; null task ids are broadcast tuples (fast-list-iter [task-id task-ids] (tuple-action-fn task-id tuple) )) ))))))
这里是对Tuple发序列化过程,实例一个TupleImpl,会调用其构造函数:
public TupleImpl(GeneralTopologyContext context, List<Object> values, int taskId, String streamId, MessageId id) { this.values = values; this.taskId = taskId; this.streamId = streamId; this.id = id; this.context = context; String componentId = context.getComponentId(taskId); Fields schema = context.getComponentOutputFields(componentId, streamId); if(values.size()!=schema.size()) { throw new IllegalArgumentException( "Tuple created with wrong number of fields. " + "Expected " + schema.size() + " fields but got " + values.size() + " fields"); } }
那么这个StreamId是从什么时候传进来的呐??
storm是像spark一样,使用DAG引擎的,关于DAG引擎的优缺点,请看 DAG (directed acyclic graph) 作为大数据执行引擎的优点
DAG就是一个有向图,在createTopology时就创建好了,具体请看
1、我们一般用TopologyBuilder来构建topology,每次setBolt时,都会把指定group方式,grouping里面就保留当前bolt接收上游bolt的streamId
private BoltDeclarer grouping(String componentId, String streamId, Grouping grouping) { _commons.get(_boltId).put_to_inputs(new GlobalStreamId(componentId, streamId), grouping); return this; }
public StormTopology createTopology() { Map<String, Bolt> boltSpecs = new HashMap<String, Bolt>(); Map<String, SpoutSpec> spoutSpecs = new HashMap<String, SpoutSpec>(); for(String boltId: _bolts.keySet()) { IRichBolt bolt = _bolts.get(boltId); ComponentCommon common = getComponentCommon(boltId, bolt); boltSpecs.put(boltId, new Bolt(ComponentObject.serialized_java(Utils.serialize(bolt)), common)); } for(String spoutId: _spouts.keySet()) { IRichSpout spout = _spouts.get(spoutId); ComponentCommon common = getComponentCommon(spoutId, spout); spoutSpecs.put(spoutId, new SpoutSpec(ComponentObject.serialized_java(Utils.serialize(spout)), common)); } return new StormTopology(spoutSpecs, boltSpecs, new HashMap<String, StateSpoutSpec>()); }
(defn mk-executor [worker executor-id] (let [executor-data (mk-executor-data worker executor-id);; mk-executor-data _ (log-message "Loading executor " (:component-id executor-data) ":" (pr-str executor-id)) task-datas (->> executor-data :task-ids (map (fn [t] [t (task/mk-task executor-data t)])) (into {}) (HashMap.)) _ (log-message "Loaded executor tasks " (:component-id executor-data) ":" (pr-str executor-id)) report-error-and-die (:report-error-and-die executor-data) component-id (:component-id executor-data) ;; starting the batch-transfer->worker ensures that anything publishing to that queue ;; doesn't block (because it's a single threaded queue and the caching/consumer started ;; trick isn't thread-safe) system-threads [(start-batch-transfer->worker-handler! worker executor-data)] handlers (with-error-reaction report-error-and-die (mk-threads executor-data task-datas)) ;;这里会调用mk-threads:spout和mk-thread:bolt来创建thread threads (concat handlers system-threads)] (setup-ticks! worker executor-data)
let [executor-data (mk-executor-data worker executor-id);; mk-executor-data
在mk-executor-data方法里有调用mk-grouper的方法的方法,在下面代码的第37行
(defn mk-executor-data [worker executor-id] (let [worker-context (worker-context worker) task-ids (executor-id->tasks executor-id) component-id (.getComponentId worker-context (first task-ids)) storm-conf (normalized-component-conf (:storm-conf worker) worker-context component-id) executor-type (executor-type worker-context component-id) batch-transfer->worker (disruptor/disruptor-queue (str "executor" executor-id "-send-queue") (storm-conf TOPOLOGY-EXECUTOR-SEND-BUFFER-SIZE) :claim-strategy :single-threaded :wait-strategy (storm-conf TOPOLOGY-DISRUPTOR-WAIT-STRATEGY)) ] (recursive-map :worker worker :worker-context worker-context :executor-id executor-id :task-ids task-ids :component-id component-id :open-or-prepare-was-called? (atom false) :storm-conf storm-conf :receive-queue ((:executor-receive-queue-map worker) executor-id) :storm-id (:storm-id worker) :conf (:conf worker) :shared-executor-data (HashMap.) :storm-active-atom (:storm-active-atom worker) :batch-transfer-queue batch-transfer->worker :transfer-fn (mk-executor-transfer-fn batch-transfer->worker) :suicide-fn (:suicide-fn worker) :storm-cluster-state (cluster/mk-storm-cluster-state (:cluster-state worker)) :type executor-type ;; TODO: should refactor this to be part of the executor specific map (spout or bolt with :common field) :stats (mk-executor-stats <> (sampling-rate storm-conf)) :interval->task->metric-registry (HashMap.) :task->component (:task->component worker) ;; outbound-components方法里outbound-groupings的会调用mk-grouper方法 ;; mk-grouper method doc => Returns a function that returns a vector of which task indices to send tuple to, or just a single task index. :stream->component->grouper (outbound-components worker-context component-id) :report-error (throttled-report-error-fn <>) :report-error-and-die (fn [error] ((:report-error <>) error) ((:suicide-fn <>))) :deserializer (KryoTupleDeserializer. storm-conf worker-context) :sampler (mk-stats-sampler storm-conf) ;; TODO: add in the executor-specific stuff in a :specific... or make a spout-data, bolt-data function? )))
回来再看错误堆栈信息
java.lang.RuntimeException: java.lang.IllegalArgumentException: No output fields defined for component:stream XxxBolt:null at backtype.storm.utils.DisruptorQueue.consumeBatchToCursor(DisruptorQueue.java:127) ~[storm-core-0.9.3-rc1.jar:0.9.3-rc1] at backtype.storm.utils.DisruptorQueue.consumeBatchWhenAvailable(DisruptorQueue.java:96) ~[storm-core-0.9.3-rc1.jar:0.9.3-rc1] at backtype.storm.disruptor$consume_batch_when_available.invoke(disruptor.clj:81) ~[storm-core-0.9.3-rc1.jar:0.9.3-rc1] at backtype.storm.daemon.executor$fn__4321$fn__4333$fn__4380.invoke(executor.clj:747) ~[storm-core-0.9.3-rc1.jar:0.9.3-rc1] at backtype.storm.util$async_loop$fn__457.invoke(util.clj:457) ~[storm-core-0.9.3-rc1.jar:0.9.3-rc1] at clojure.lang.AFn.run(AFn.java:24) [clojure-1.5.1.jar:na] at java.lang.Thread.run(Thread.java:662) [na:1.6.0_45]
private void consumeBatchToCursor(long cursor, EventHandler<Object> handler) { for(long curr = _consumer.get() + 1; curr <= cursor; curr++) { try { MutableObject mo = _buffer.get(curr); Object o = mo.o; mo.setObject(null); if(o==FLUSH_CACHE) { Object c = null; while(true) { c = _cache.poll(); if(c==null) break; else handler.onEvent(c, curr, true); } } else if(o==INTERRUPT) { throw new InterruptedException("Disruptor processing interrupted"); } else { handler.onEvent(o, curr, curr == cursor); } } catch (Exception e) { // 这里抛出的,引起这个异常的地方是上面handler.onEvent()方法 throw new RuntimeException(e); } } //TODO: only set this if the consumer cursor has changed? _consumer.set(cursor); }
(defmethod mk-threads :bolt [executor-data task-datas] (let [execute-sampler (mk-stats-sampler (:storm-conf executor-data)) executor-stats (:stats executor-data) {:keys [storm-conf component-id worker-context transfer-fn report-error sampler open-or-prepare-was-called?]} executor-data rand (Random. (Utils/secureRandomLong)) tuple-action-fn (fn [task-id ^TupleImpl tuple] ;; synchronization needs to be done with a key provided by this bolt, otherwise: ;; spout 1 sends synchronization (s1), dies, same spout restarts somewhere else, sends synchronization (s2) and incremental update. s2 and update finish before s1 -> lose the incremental update ;; TODO: for state sync, need to first send sync messages in a loop and receive tuples until synchronization ;; buffer other tuples until fully synchronized, then process all of those tuples ;; then go into normal loop ;; spill to disk? ;; could be receiving incremental updates while waiting for sync or even a partial sync because of another failed task ;; should remember sync requests and include a random sync id in the request. drop anything not related to active sync requests ;; or just timeout the sync messages that are coming in until full sync is hit from that task ;; need to drop incremental updates from tasks where waiting for sync. otherwise, buffer the incremental updates ;; TODO: for state sync, need to check if tuple comes from state spout. if so, update state ;; TODO: how to handle incremental updates as well as synchronizations at same time ;; TODO: need to version tuples somehow ;;(log-debug "Received tuple " tuple " at task " task-id) ;; need to do it this way to avoid reflection (let [stream-id (.getSourceStreamId tuple)] (condp = stream-id Constants/METRICS_TICK_STREAM_ID (metrics-tick executor-data (get task-datas task-id) tuple) (let [task-data (get task-datas task-id) ^IBolt bolt-obj (:object task-data) user-context (:user-context task-data) sampler? (sampler) execute-sampler? (execute-sampler) now (if (or sampler? execute-sampler?) (System/currentTimeMillis))] (when sampler? (.setProcessSampleStartTime tuple now)) (when execute-sampler? (.setExecuteSampleStartTime tuple now)) (.execute bolt-obj tuple) (let [delta (tuple-execute-time-delta! tuple)] (task/apply-hooks user-context .boltExecute (BoltExecuteInfo. tuple task-id delta)) (when delta (builtin-metrics/bolt-execute-tuple! (:builtin-metrics task-data) executor-stats (.getSourceComponent tuple) (.getSourceStreamId tuple) delta) (stats/bolt-execute-tuple! executor-stats (.getSourceComponent tuple) (.getSourceStreamId tuple) delta)))))))] ;; TODO: can get any SubscribedState objects out of the context now [(async-loop (fn [] ;; If topology was started in inactive state, don't call prepare bolt until it's activated first. (while (not @(:storm-active-atom executor-data)) (Thread/sleep 100)) (log-message "Preparing bolt " component-id ":" (keys task-datas)) (doseq [[task-id task-data] task-datas :let [^IBolt bolt-obj (:object task-data) tasks-fn (:tasks-fn task-data) user-context (:user-context task-data) bolt-emit (fn [stream anchors values task] (let [out-tasks (if task (tasks-fn task stream values) (tasks-fn stream values))] (fast-list-iter [t out-tasks] (let [anchors-to-ids (HashMap.)] (fast-list-iter [^TupleImpl a anchors] (let [root-ids (-> a .getMessageId .getAnchorsToIds .keySet)] (when (pos? (count root-ids)) (let [edge-id (MessageId/generateId rand)] (.updateAckVal a edge-id) (fast-list-iter [root-id root-ids] (put-xor! anchors-to-ids root-id edge-id)) )))) (transfer-fn t (TupleImpl. worker-context values task-id stream (MessageId/makeId anchors-to-ids))))) (or out-tasks [])))]] (builtin-metrics/register-all (:builtin-metrics task-data) storm-conf user-context) (if (= component-id Constants/SYSTEM_COMPONENT_ID) (builtin-metrics/register-queue-metrics {:sendqueue (:batch-transfer-queue executor-data) :receive (:receive-queue executor-data) :transfer (:transfer-queue (:worker executor-data))} storm-conf user-context) (builtin-metrics/register-queue-metrics {:sendqueue (:batch-transfer-queue executor-data) :receive (:receive-queue executor-data)} storm-conf user-context) ) (.prepare bolt-obj storm-conf user-context (OutputCollector. (reify IOutputCollector (emit [this stream anchors values] (bolt-emit stream anchors values nil)) (emitDirect [this task stream anchors values] (bolt-emit stream anchors values task)) (^void ack [this ^Tuple tuple] (let [^TupleImpl tuple tuple ack-val (.getAckVal tuple)] (fast-map-iter [[root id] (.. tuple getMessageId getAnchorsToIds)] (task/send-unanchored task-data ACKER-ACK-STREAM-ID [root (bit-xor id ack-val)]) )) (let [delta (tuple-time-delta! tuple)] (task/apply-hooks user-context .boltAck (BoltAckInfo. tuple task-id delta)) (when delta (builtin-metrics/bolt-acked-tuple! (:builtin-metrics task-data) executor-stats (.getSourceComponent tuple) (.getSourceStreamId tuple) delta) (stats/bolt-acked-tuple! executor-stats (.getSourceComponent tuple) (.getSourceStreamId tuple) delta)))) (^void fail [this ^Tuple tuple] (fast-list-iter [root (.. tuple getMessageId getAnchors)] (task/send-unanchored task-data ACKER-FAIL-STREAM-ID [root])) (let [delta (tuple-time-delta! tuple)] (task/apply-hooks user-context .boltFail (BoltFailInfo. tuple task-id delta)) (when delta (builtin-metrics/bolt-failed-tuple! (:builtin-metrics task-data) executor-stats (.getSourceComponent tuple) (.getSourceStreamId tuple)) (stats/bolt-failed-tuple! executor-stats (.getSourceComponent tuple) (.getSourceStreamId tuple) delta)))) (reportError [this error] (report-error error) ))))) (reset! open-or-prepare-was-called? true) (log-message "Prepared bolt " component-id ":" (keys task-datas)) (setup-metrics! executor-data) (let [receive-queue (:receive-queue executor-data) ;; 这里创建event-handler供disruptorQueue来调用 event-handler (mk-task-receiver executor-data tuple-action-fn)] (disruptor/consumer-started! receive-queue) (fn [] (disruptor/consume-batch-when-available receive-queue event-handler);;这里开始使用event-handler 0))) :kill-fn (:report-error-and-die executor-data) :factory? true :thread-name component-id)]))
====================================
其实追到这里我还是没有找出为什么会报这个异常的原因,哪位大牛如果知道,请留言,或e-mail(joey.wen@outlook.com)告知,I will appreciate that
storm运行异常之No output fields defined for component:stream XxxBolt:null疑案追踪
标签:storm
原文地址:http://blog.csdn.net/wzhg0508/article/details/42487545