码迷,mamicode.com
首页 > 其他好文 > 详细

(中等) UESTC 94 Bracket Sequence,线段树+括号。

时间:2015-01-07 20:30:57      阅读:178      评论:0      收藏:0      [点我收藏+]

标签:

  There is a sequence of brackets, which supports two kinds of operations.

  1. we can choose a interval [l,r], and set all the elements range in this interval to left bracket or right bracket.
  2. we can reverse a interval, which means that for all the elements range in [l,r], if it‘s left bracket at that time, we change it into right bracket, vice versa.

  Fish is fond of Regular Bracket Sequence, so he want to know whether a interval [l,r] of the sequence is regular or not after doing some operations.

  Let us define a regular brackets sequence in the following way:

  1. Empty sequence is a regular sequence.
  2. If S is a regular sequence, then (S) is also a regular sequences.
  3. If A and B are regular sequences, then AB is a regular sequence.

  

  题目大意就是说给你一个括号序列,对他进行操作和询问,包括反转和覆盖两个操作。

  维护一个总和,还有一个最小前缀和(还要维护最大前缀和,在反转的时候计算最小的。)。当总和和最小前缀和都为0,则成立。

  这个题又被坑了好久,没办法,水平太差了,错了十几次,电子科大的提交记录都被我刷屏了。。。错误百出。。。

 

代码如下:

技术分享
#include<iostream>
#include<cstdio>
#include<cstring>

#define lson L,M,po*2
#define rson M+1,R,po*2+1
#define max(a,b) (a>b?a:b)
#define min(a,b) (a<b?a:b)

using namespace std;

int BIT[100015*4];
int QS[100015*4];
int MS[100015*4];
int XOR[100015*4];
int COL[100015*4];
char ss[100015];

void pushUP(int po)
{
    BIT[po]=BIT[po*2]+BIT[po*2+1];
    QS[po]=max(QS[po*2],BIT[po*2]+QS[po*2+1]);            //这里要注意。
    MS[po]=min(MS[po*2],BIT[po*2]+MS[po*2+1]);
}

void pushDown(int po,int len)
{
    if(COL[po])
    {
        COL[po*2]=COL[po];
        COL[po*2+1]=COL[po];
        XOR[po*2]=XOR[po*2+1]=0;                //这里不能忘记。
        BIT[po*2]=(len-(len/2))*COL[po];
        BIT[po*2+1]=(len/2)*COL[po];
        
        QS[po*2]=max(-1,BIT[po*2]);
        QS[po*2+1]=max(-1,BIT[po*2+1]);
        MS[po*2]=min(1,BIT[po*2]);
        MS[po*2+1]=min(1,BIT[po*2+1]);

        COL[po]=0;
    }

    if(XOR[po])
    {
        int temp;

        XOR[po*2]=!XOR[po*2];
        XOR[po*2+1]=!XOR[po*2+1];

        BIT[po*2]=-BIT[po*2];
        BIT[po*2+1]=-BIT[po*2+1];

        temp=QS[po*2];
        QS[po*2]=-MS[po*2];
        MS[po*2]=-temp;

        temp=QS[po*2+1];
        QS[po*2+1]=-MS[po*2+1];
        MS[po*2+1]=-temp;

        XOR[po]=0;
    }
}

void build_tree(int L,int R,int po)
{
    XOR[po]=0;
    COL[po]=0;

    if(L==R)
    {
        if(ss[L]==()
        {
            BIT[po]=1;
            QS[po]=1;
            MS[po]=1;
        }
        else
        {
             BIT[po]=-1;
            QS[po]=-1;
            MS[po]=-1;
        }

        return;
    }

    int M=(L+R)/2;

    build_tree(lson);
    build_tree(rson);

    pushUP(po);
}

void update_col(int ul,int ur,int ut,int L,int R,int po)
{
    if(ul<=L&&ur>=R)
    {
        XOR[po]=0;
        COL[po]=ut;
        BIT[po]=ut*(R-L+1);
        
        QS[po]=max(-1,BIT[po]);
        MS[po]=min(1,BIT[po]);

        return;
    }

    pushDown(po,R-L+1);

    int M=(L+R)/2;

    if(ul<=M)
        update_col(ul,ur,ut,lson);
    if(ur>M)
        update_col(ul,ur,ut,rson);

    pushUP(po);
}

void update_xor(int ul,int ur,int L,int R,int po)
{
    if(ul<=L&&ur>=R)
    {
        XOR[po]=!XOR[po];
        BIT[po]=-BIT[po];

        int temp=QS[po];
        QS[po]=-MS[po];
        MS[po]=-temp;

        return;
    }

    pushDown(po,R-L+1);

    int M=(L+R)/2;

    if(ul<=M)
        update_xor(ul,ur,lson);
    if(ur>M)
        update_xor(ul,ur,rson);

    pushUP(po);
}

int query(int &qs,int ql,int qr,int L,int R,int po)            //不能忘记写 & !!!
{
    if(ql<=L&&qr>=R)
    {
        qs=MS[po];
        return BIT[po];
    }

    pushDown(po,R-L+1);

    int M=(L+R)/2;
    int ans=0;

    if(qr<=M)
        return query(qs,ql,qr,lson);
    if(ql>M)
        return query(qs,ql,qr,rson);

    int temp1,temp2,a1;

    a1=query(temp1,ql,qr,lson);
    ans=a1+query(temp2,ql,qr,rson);

    qs=min(temp1,temp2+a1);

    return ans;
}

bool getans(int ql,int qr,int N)
{
    int t1;
    int ans;

    if((qr-ql)%2==0)
        return 0;

    ans=query(t1,ql,qr,0,N,1);

    if(ans==0&&t1==0)
        return 1;
    else
        return 0;
}

int main()
{
    int T;
    int N,Q;
    char t1[20],t2[20];
    int a,b;
    cin>>T;

    for(int cas=1;cas<=T;++cas)
    {
        printf("Case %d:\n",cas);

        scanf("%d",&N);
        scanf("%s",ss);

        build_tree(0,N-1,1);                    //这里应该是N-1。

        scanf("%d",&Q);

        for(int i=0;i<Q;++i)
        {
            scanf("%s %d %d",t1,&a,&b);

            if(t1[0]==s)
            {
                scanf("%s",t2);
                update_col(a,b,t2[0]==(?1:-1,0,N-1,1);
            }
            else if(t1[0]==r)
                update_xor(a,b,0,N-1,1);
            else
                if(getans(a,b,N-1))
                    printf("YES\n");
                else
                    printf("NO\n");
        }

        printf("\n");
    }

    return 0;
}
View Code

 

(中等) UESTC 94 Bracket Sequence,线段树+括号。

标签:

原文地址:http://www.cnblogs.com/whywhy/p/4209170.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!