标签:
利用TExp类的运算来求矩阵的特征值,初等因子等:using System; using System.Collections.Generic; using System.Linq; using System.Text; namespace MyMathLib { /// <summary> /// 一元多项式计算 /// </summary> public class PolynomialOfOneBasic { /// <summary> /// 化成对阶梯矩阵 /// </summary> /// <param name="CoefficientDeterminant">系数矩阵</param> public static void TransToEchelonMatrix(TExp[,] CoefficientDeterminant) { var theRowCount = CoefficientDeterminant.GetLength(0); var theColCount = CoefficientDeterminant.GetLength(1); int theN = theRowCount; int theE = theColCount; //从第1列到第theE列. for (int i = 0; i < theE; i++) { //从第theN-1行到第1行,将D[j,i]依次变为0,需要注意的是: //如果第j-1行,的左元素全部为0,才能继续交换. for (int j = theN - 1; j > 0; j--) { //如果为当前值为0,则不处理,继续处理上一行 if (CoefficientDeterminant[j, i] == (TExp)0) { continue; } //******这里增加修改了判断是否继续交换消元的条件: //如果左上邻元素[j-1, i-1]以及其左边的元素都为0方可交换 //因为当前元素的左边元素已经全部是零,因此如果要交换不能使本行左边产生非零数, //则需要左上邻及其所有元素皆为0. var theCanDo = true; for (int s = i - 1; s >= 0; s--) { if (CoefficientDeterminant[j - 1, s] != (TExp)0) { theCanDo = false; break; } } if (theCanDo) { //如果[j,i]的上一行[j-1, i]的值为0则交换 if (CoefficientDeterminant[j - 1, i] == (TExp)0) { for (int k = 0; k < theE; k++)//这里要交换常数项 { TExp theTmpDec = CoefficientDeterminant[j, k]; CoefficientDeterminant[j, k] = CoefficientDeterminant[j - 1, k]; CoefficientDeterminant[j - 1, k] = theTmpDec; } } else { var theRate2 = CoefficientDeterminant[j, i]; var theRate1 = CoefficientDeterminant[j - 1, i]; for (int k = i; k < theE; k++)//这里要计算常数项 { CoefficientDeterminant[j, k] = CoefficientDeterminant[j, k] * theRate1 - CoefficientDeterminant[j - 1, k] * theRate2; } //将第i行,以最高次数系数来消除大数项. double theMaxRation = 0; uint theMaxPower = 0; for (int k = i+1; k < theE; k++)//这里要计算常数项 { var theMaxItem = CoefficientDeterminant[j, k].GetMaxPowerExp(); if (theMaxItem.Power > theMaxPower) { theMaxPower = theMaxItem.Power; theMaxRation = theMaxItem.Ratio; } else if (theMaxItem.Power == theMaxPower) { if (Math.Abs(theMaxItem.Ratio) > Math.Abs(theMaxRation)) { theMaxRation = theMaxItem.Ratio; } } } // if (theMaxRation != 0) { theMaxRation = 1 / theMaxRation; for (int k = i + 1; k < theE; k++)//这里要计算常数项 { CoefficientDeterminant[j, k] = CoefficientDeterminant[j, k] * theMaxRation; } } } } } } } /// <summary> /// 变换成对角矩阵,这个算法的问题在于会增加方程解。 /// </summary> /// <returns>变换过程记录.</returns> public static void TransToStandardForm(TExp[,] CoefficientDeterminant) { //先把矩阵转换成上三角矩阵。 TransToEchelonMatrix(CoefficientDeterminant); //然后从最后一列开始,第1行开始变换为0. var theColCount = CoefficientDeterminant.GetLength(0); var theRowCount = CoefficientDeterminant.GetLength(1); for (int j = theColCount - 1; j >= 0; j--) { //从下到上找到第1个非0行,作为基准行(减少行) //因为矩阵的下半部分全为0,则开始找的位置在对角线上开始. int theR = -1; int theStartIndex = Math.Min(j, theRowCount - 1); for (int i = theStartIndex; i >= 0; i--) { if (CoefficientDeterminant[i, j] != (TExp)0) { theR = i; break; } } //如果找到基准行,则开始变换,利用减去基准行*一个系数来消除第0到thR-1行的元素 if (theR >= 0) { for (int i = 0; i < theR; i++) { var theRate2 = CoefficientDeterminant[theR, j]; var theRate1 = CoefficientDeterminant[i, j]; for (int k = 0; k < theColCount; k++)//这里要计算常数项 { CoefficientDeterminant[i, k] = (CoefficientDeterminant[i, k] * theRate2) - (CoefficientDeterminant[theR, k] * theRate1); } //将第i行,以最高次数系数来消除大数项. double theMaxRation = 0; uint theMaxPower = 0; for (int k = 0; k < theColCount; k++)//这里要计算常数项 { var theMaxItem = CoefficientDeterminant[i, k].GetMaxPowerExp(); if (theMaxItem.Power > theMaxPower) { theMaxPower = theMaxItem.Power; theMaxRation = theMaxItem.Ratio; } else if (theMaxItem.Power == theMaxPower) { if (Math.Abs(theMaxItem.Ratio) > Math.Abs(theMaxRation)) { theMaxRation = theMaxItem.Ratio; } } } // if (theMaxRation != 0) { theMaxRation = 1 / theMaxRation; for (int k = 0; k < theColCount; k++)//这里要计算常数项 { CoefficientDeterminant[i, k] = CoefficientDeterminant[i, k] * theMaxRation; } } } } } } /// <summary> /// 转换到对角矩阵,不会增加矩阵乘积的次数,主要用于初等因子的寻找. /// </summary> /// <param name="Elements">Lambda矩阵.</param> public static void TransToDiagMatrix(TExp[,] Elements) { var theRowCount = Elements.GetLength(0); var theColCount = Elements.GetLength(1); if (theRowCount != theColCount || theColCount<=0) { throw new Exception("本方法仅支持方阵,阶数n大于等于0!"); } //主要用于Lambda矩阵的处理,这里从第theColCount开始处理 //相当于从右上角开始沿对角线进行处理[theRowCount-j-1,j] for (int j = theRowCount-1; j >= 0; j--) { //寻找i行i列中的常数元素 0 表示没找到 1 表示遍历行找到,-1 表示列遍历找到. //如果当前的元素为0,如果没找到,就把找到的非常数项交换到当前位置. //非常数项的次数应该尽量的低. int theNotZeroR = -1; int theNotZeroC = -1; uint theNotZeroPower = uint.MaxValue; var theHasFind = 0; var theIndex = -1; for (int k = j; k >= 0; k--) { if (Elements[theRowCount - j - 1, k].GetMaxPowerExp().Power < theNotZeroPower) { if (!Elements[theRowCount - j - 1, k].IsZero) { theNotZeroPower = Elements[theRowCount - j - 1, k].GetMaxPowerExp().Power; theNotZeroR = theRowCount - j - 1; theNotZeroC = k; } } if (Elements[theRowCount - k - 1, j].GetMaxPowerExp().Power < theNotZeroPower) { if (!Elements[theRowCount - k - 1, j].IsZero) { theNotZeroPower = Elements[theRowCount - k - 1, j].GetMaxPowerExp().Power; theNotZeroR = theRowCount - k - 1; theNotZeroC = j; } } if (Elements[theRowCount - j - 1, k].IsNotZeroConst) { theHasFind = 1; theIndex = k; break; } if (Elements[theRowCount - k - 1, j].IsNotZeroConst) { theHasFind = -1; theIndex = theRowCount - k - 1; break; } } if (theHasFind != 0) { switch (theHasFind) { case -1: Elements.SwapRow(theIndex, j); theNotZeroR = -1; theNotZeroC = -1; break; case 1: Elements.SwapCol(theIndex, j); theNotZeroC =-1; theNotZeroR = -1; break; } //处理[theRowCount-j-1,j]所在行列的元素 RemoveNoZeroElement(Elements, theRowCount - j - 1, j); } else { //如果没找到常数项,且当前项为0项,则交换 if (Elements[theRowCount - j - 1, j].IsZero) { //行相同,交换列 if (theRowCount - j - 1 == theNotZeroR) { Elements.SwapCol(theNotZeroC, j); } else { if(j== theNotZeroC) { Elements.SwapRow(theNotZeroR, theRowCount - j - 1); } } } //继续找,这次是找两个相加后为常量的项 //以元素[theRowCount-j-1,j]为准,先向下找. #region 在同一列上向下找 var theHasFind2 = false; var theR1 = -1; var theR2 = -1; double theSign = 1; //这里需要考虑到对应成比例的问题. for (int r1 = theRowCount - j - 1; r1 < theRowCount; r1++) { if (Elements[r1, j].IsZero) { continue; } else { for (int r2 = r1 + 1; r2 < theRowCount; r2++) { //零元素可以不考虑. if (Elements[r2, j].IsZero) { continue; } else { var theTempRatio1 = Elements[r1, j].GetMaxPowerItemRatio(); var theTempRatio2 = Elements[r2, j].GetMaxPowerItemRatio(); var theTempRate = theTempRatio1 / theTempRatio2; var theTemp = Elements[r1, j] + (theTempRate * Elements[r2, j]); if (theTemp.IsNotZeroConst || theTemp.IsZero) { theHasFind2 = true; theR1 = r1; theR2 = r2; theSign = theTempRate; break; } else { theTemp = Elements[r1, j] - (theTempRate * Elements[r2, j]); if (theTemp.IsNotZeroConst || theTemp.IsZero) { theHasFind2 = true; theR1 = r1; theR2 = r2; theSign = -theTempRate; break; } } } } if (theHasFind2) { break; } } } if (theHasFind2) { var theContinue2 = true; if (theR1 == theRowCount - j - 1) { var theTempExp = Elements[theRowCount - j - 1, j] + Elements[theR2, j] * theSign; if (theTempExp.IsZero) { theContinue2 = false; } } if (theContinue2) { //1、先将[r,j]变为非零常量项 for (int c = 0; c <= j; c++) { Elements[theR1, c] = Elements[theR1, c] + (Elements[theR2, c] * theSign); } //2、交换theRowCount-j-1 行和r1(theR1) Elements.SwapRow(theRowCount - j - 1, theR1); } //3、以[theRowCount-j-1,j]为准,变其所在行列的非零元素为零元素. //处理[theRowCount-j-1,j]所在行列的元素 //如果当前元素为0,则继续处理当前行. if (Elements[theRowCount - j - 1, j].IsZero) { j++; } else { RemoveNoZeroElement(Elements, theRowCount - j - 1, j); } } #endregion else { //以元素[theRowCount-j-1,j]为准,向左找. #region 同一行上向左找. var theHasFind3 = false; var theC1 = -1; var theC2 = -1; double theSign2 = 1; //这里需要考虑到对应成比例的问题. for (int c1 = j; c1 >=0; c1--) { if (Elements[theRowCount-j-1, c1].IsZero) { continue; } else { for (int c2 = c1 -1; c2 >= 0; c2--) { //零元素可以不考虑. if (Elements[theRowCount - j - 1, c2].IsZero) { continue; } else { var theTempRatio1 = Elements[theRowCount - j - 1, c1].GetMaxPowerItemRatio(); var theTempRatio2 = Elements[theRowCount - j - 1, c2].GetMaxPowerItemRatio(); var theTempRate = theTempRatio1 / theTempRatio2; var theTemp = Elements[theRowCount - j - 1, c1] + (theTempRate * Elements[theRowCount - j - 1, c2]); if (theTemp.IsNotZeroConst || theTemp.IsZero) { theHasFind3 = true; theC1 = c1; theC2 = c2; theSign2 = theTempRate; break; } else { theTemp = Elements[theRowCount - j - 1, c1] - (theTempRate * Elements[theRowCount - j - 1, c2]); if (theTemp.IsNotZeroConst || theTemp.IsZero) { theHasFind3 = true; theC1 = c1; theC2 = c2; theSign2 = 0.0-theTempRate; break; } } } } if (theHasFind3) { break; } } } if (theHasFind3) { //1、先将[theRowCount-j-1,theC1]变为非零常量项 //2、当如果变换使得当前元素为0,则不进行交换 var theContinue3 = true; if (theC1 == j) { var theTempExp = Elements[theRowCount - j - 1, j] + Elements[theRowCount - j - 1, theC2] * theSign2; if (theTempExp.IsZero) { theContinue3 = false; } } if (theContinue3) { for (int r = theRowCount - j - 1; r < theRowCount; r++) { Elements[r, theC1] = Elements[r, theC1] + Elements[r, theC2] * theSign2; } //2、交换j列和c1(theC1) Elements.SwapCol(j, theC1); } //3、以[theRowCount-j-1,j]为准,变其所在行列的非零元素为零元素. //处理[theRowCount-j-1,j]所在行列的元素 //如果当前元素为0,则继续处理当前行. if (Elements[theRowCount - j - 1, j].IsZero) { j++; } else { RemoveNoZeroElement(Elements, theRowCount - j - 1, j); } } #endregion } } } } /// <summary> /// 消除Row行,Col列的非零元素 /// </summary> /// <param name="Elements"></param> /// <param name="Row"></param> /// <param name="Col"></param> private static void RemoveNoZeroElement(TExp[,] Elements,int Row, int Col) { var theRowCount = Elements.GetLength(0); var theRate1 = Elements[Row, Col]; //var theConstRate = 1;// / ((TSymbolExp)theRate1).Ratio; ////处理列[theRowCount-j-1,0..j] for (int c = 0; c < Col; c++) { //零元素不用消元 if (Elements[Row, c].IsZero) { continue; } var theRate2 = Elements[Row, c]; var theConstRate = theRate2.GetMaxPowerItemRatio() / theRate1.GetMaxPowerItemRatio(); //获取两个表达式的相关系数. var theTempRatio = TExp.GetRelativRation(theRate1, theRate2); //c列所在元素都需要变为0 double theAdjustRatio = 0; uint theAdjustPower = 0; for (int r = Row; r < theRowCount; r++) { if (theTempRatio.IsEqualTo(0)) { Elements[r, c] = theConstRate * ((Elements[r, c] * theRate1) - (Elements[r, Col] * theRate2)); } else { Elements[r, c] = (Elements[r, c] * theTempRatio) - (Elements[r, Col]); } var theTmpPower = Elements[r, c].GetMaxPowerExp().Power; var theTmpRatio = Elements[r, c].GetMaxPowerItemRatio(); if (theTmpPower > theAdjustPower) { theAdjustPower = theTmpPower; theAdjustRatio = theTmpRatio; } else if (theTmpPower == theAdjustPower) { if (Math.Abs(theAdjustRatio) < Math.Abs(theTmpRatio)) { theAdjustRatio = theTmpRatio; } } } if (theAdjustPower > 0) { for (int r = Row; r < theRowCount; r++) { Elements[r, c] = Elements[r, c] * (1 / theAdjustRatio); } } } //处理行[theRowCount-j..theRowCount,j] for (int r = Row + 1; r < theRowCount; r++) { //如果是零元素则继续. if (Elements[r, Col].IsZero) { continue; } var theRate2 = Elements[r, Col]; var theConstRate = theRate2.GetMaxPowerItemRatio() / theRate1.GetMaxPowerItemRatio(); double theAdjustRatio = 0; uint theAdjustPower = 0; //获取两个表达式的相关系数. var theTempRatio = TExp.GetRelativRation(theRate1, theRate2); for (int c = 0; c <= Col; c++) { if (theTempRatio.IsEqualTo(0)) { Elements[r, c] = theConstRate * ((Elements[r, c] * theRate1) - (Elements[Row, c] * theRate2)); } else { Elements[r, c] = (Elements[r, c] * theTempRatio) - (Elements[Row, c]); } var theTmpPower = Elements[r, c].GetMaxPowerExp().Power; var theTmpRatio = Elements[r, c].GetMaxPowerItemRatio(); if (theTmpPower > theAdjustPower) { theAdjustPower = theTmpPower; theAdjustRatio = theTmpRatio; } else if (theTmpPower == theAdjustPower) { if (Math.Abs(theAdjustRatio) < Math.Abs(theTmpRatio)) { theAdjustRatio = theTmpRatio; } } } if (theAdjustPower > 0) { for (int c = 0; c <= Col; c++) { Elements[r, c] = Elements[r, c] * (1 / theAdjustRatio); } } } } } }
用法:
var theBasis = new List<double[]>(); theBasis.Add(new double[] { 1, 0, 0 }); theBasis.Add(new double[] { 0, 1, 0 }); theBasis.Add(new double[] { 0, 0, 1 }); TExp x = new TSymbolExp() { Power = 1, Ratio = 1, Symbol = "x" }; var theP = new TExp[3, 3]{ { 2-x, 3.0, 0.0}, { 3, 2-x, 0.0}, { 3, -3, 5-x} }; MyMathLib.PolynomialOfOneBasic.TransToDiagMatrix(theP); FormatViewArray(theP);
这里的x为Lambda,就是λ-矩阵,theP等于(A-λE).计算结果会有小数上的差异,主要是浮点运算引起的,没有完全处理回去,大家注意就行,不影响结果。
线性代数部分就到此尾声了,后面会总结一下概念。
标签:
原文地址:http://blog.csdn.net/hawksoft/article/details/42501661