2 2 3 3 3
Case #1: 2.625 Case #2: 4.222HintFor the first case, all possible combinations BieBie can pick are (1, 1, 1),(1,1,2),(1,2,1),(1,2,2),(2,1,1),(2,1,2),(2,2,1),(2,2,2) For (1,1,1),there is only one kind number i.e. 1, so the sum of different score is 1. However, for (1,2,1), there are two kind numbers i.e. 1 and 2, so the sum of different score is 1+2=3. So the sums of different score to corresponding combination are 1,3,3,3,3,3,3,2 So the expectation is (1+3+3+3+3+3+3+2)/8=2.625
桌子上有a张牌,每张牌从1到a编号,编号为i(1<=i<=a)的牌上面标记着分数i , 每次从这a张牌中随机抽出一张牌,然后放回,执行b次操作,记第j次取出的牌上面分数是 Sj , 问b次操作后不同种类分数之和的期望是多少。
多组数据,第一输入数据组数T ,接下来T行,每行两个整数a,b以空格分开 [参数说明] 所有输入均为整数 1<=T<=500000 1<=a<=100000 1<=b<=5
输出答案占一行,输出格式为 Case #x: ans, x是数据编号从1开始,ans是答案,精确到小数点后3位。 看样例可以得到更多信息。
2 2 3 3 3
Case #1: 2.625 Case #2: 4.222 提示: 对于第一组数据所有牌型的组合为(1, 1, 1),(1,1,2),(1,2,1),(1,2,2),(2,1,1),(2,1,2),(2,2,1),(2,2,2) 对于(1,1,1)这个组合,他只有一种数字,所以不同数字之和为1 而对于(1,2,1)有两种不同的数字,即1和2,所以不同数字之和是3。 所以对应组合的不同数字之和为1,3,3,3,3,3,3,2 所以期望为(1+3+3+3+3+3+3+2)/8=2.625
数学期望题。
虽然之前学过期望,学过期望的线性性质,会一点概率,但是这次比赛做这个题来看发现自己其实还是学的不到功夫啊。。。
看到题解的一瞬间就明白了
但是比赛过程中就是没想出来
哎。。。。
设Xi代表分数为i的牌在b次操作中是否被选到,Xi=1为选到,Xi=0为未选到
那么期望EX=1*X1+2*X2+3*X3+…+x*Xx
Xi在b次中被选到的概率是1-(1-1/x)^b
那么E(Xi)= 1-(1-1/x)^b
那么EX=1*E(X1)+2*E(X2)+3*E(X3)+…+x*E(Xx)=(1+x)*x/2*(1-(1-1/x)^b)————赛后题解
其实明明能看懂,能明白的QAQ
这么蛋疼的题
代码就只有这么短= =
#include<iostream> #include<cstdio> #include<cstring> #include<cmath> #include<algorithm> using namespace std; int main() { int T,a,b; scanf("%d",&T); for (int i=1;i<=T;i++) { scanf("%d%d",&a,&b); double a1=1-pow(1-1.0/a,b); double x=a; double ans=x*(x+1)/2*a1; printf("Case #%d: %.3lf\n",i,ans); } }
【HDU5159】【BestCoderRound26.1002】Card
原文地址:http://blog.csdn.net/creationaugust/article/details/42588535