假设有棵树,长下面这个样子,它的前序遍历,中序遍历,后续遍历都很容易知道。
PreOrder: GDAFEMHZ
InOrder: ADEFGHMZ
PostOrder: AEFDHZMG
现在,假设仅仅知道前序和中序遍历,如何求后序遍历呢?比如,已知一棵树的前序遍历是”GDAFEMHZ”,而中序遍历是”ADEFGHMZ”应该如何求后续遍历?
第一步,root最简单,前序遍历的第一节点G就是root。
第二步,继续观察前序遍历GDAFEMHZ,除了知道G是root,剩下的节点必然是root的左右子树之外,没法找到更多信息了。
第三步,那就观察中序遍历ADEFGHMZ。其中root节点G左侧的ADEF必然是root的左子树,G右侧的HMZ必然是root的右子树。
第四步,观察左子树ADEF,左子树的中的根节点必然是大树的root的leftchild。在前序遍历中,大树的root的leftchild位于root之后,所以左子树的根节点为D。
第五步,同样的道理,root的右子树节点HMZ中的根节点也可以通过前序遍历求得。在前序遍历中,一定是先把root和root的所有左子树节点遍历完之后才会遍历右子树,并且遍历的右子树的第一个节点就是右子树的根节点。
如何知道哪里是前序遍历中的左子树和右子树的分界线呢?通过中序遍历去数节点的个数。
在上一次中序遍历中,root左侧是A、D、E、F,所以有4个节点位于root左侧。那么在前序遍历中,必然是第1个是G,第2到第5个由A、D、E、F过程,第6个就是root的右子树的根节点了,是M。
第六步,观察发现,上面的过程是递归的。先找到当前树的根节点,然后划分为左子树,右子树,然后进入左子树重复上面的过程,然后进入右子树重复上面的过程。最后就可以还原一棵树了。
第七步,其实,如果仅仅要求写后续遍历,甚至不要专门占用空间保存还原后的树。只需要稍微改动第六步,就能实现要求。仅需要把第六步的递归的过程改动为如下:
1 确定根,确定左子树,确定右子树。
2 在左子树中递归。
3 在右子树中递归。
// size是这棵树的节点个数 BinTree* CreateBinTree(char* pre,char* inorder,int size) { if( size == 0) return NULL; BinTree* root = new BinTree; root->left = NULL; root->right = NULL; root->value = pre[0]; int i; for(i= 0;i<size;i++) if(inorder[i] == pre[0]) break; root->left = CreateBinTree(pre+1,inorder,i); root->right = CreateBinTree(pre+1+i,inorder+i+1,size-i-1); return root; } int main() { char pre[]="ABDGCEFH"; char inorder[]="DGBAECHF"; BinTree* root = CreateBinTree(pre,inorder,8); Postorder(root); return 0; }
struct TreeNode { struct TreeNode* left; struct TreeNode* right; char elem; }; void BinaryTreeFromOrderings(char* inorder, char* preorder, int length) { if(length == 0) { //cout<<"invalid length"; return; } TreeNode* node = new TreeNode;//Noice that [new] should be written out. node->elem = *preorder; int rootIndex = 0; for(;rootIndex < length; rootIndex++) { if(inorder[rootIndex] == *preorder) break; } //Left BinaryTreeFromOrderings(inorder, preorder +1, rootIndex); //Right BinaryTreeFromOrderings(inorder + rootIndex + 1, preorder + rootIndex + 1, length - (rootIndex + 1)); cout<<node->elem<<endl; delete node; return; } int main(int argc, char* argv[]) { printf("Hello World!\n"); char* pr="GDAFEMHZ"; char* in="ADEFGHMZ"; BinaryTreeFromOrderings(in, pr, 8); printf("\n"); return 0; }
#include <stdio.h> #include <stdio.h> #include <iostream> using namespace std; struct TreeNode { struct TreeNode* left; struct TreeNode* right; char elem; }; void BinaryTreeFromOrderings(char* inorder, char* preorder, int length) { if(length == 0) { //cout<<"invalid length"; return; } char node_value = *preorder; int rootIndex = 0; for(;rootIndex < length; rootIndex++) { if(inorder[rootIndex] == *preorder) break; } //Left BinaryTreeFromOrderings(inorder, preorder +1, rootIndex); //Right BinaryTreeFromOrderings(inorder + rootIndex + 1, preorder + rootIndex + 1, length - (rootIndex + 1)); cout<<node_value<<endl; return; } int main(int argc, char* argv[]) { printf("Hello World!\n"); char* pr="GDAFEMHZ"; char* in="ADEFGHMZ"; BinaryTreeFromOrderings(in, pr, 8); printf("\n"); return 0; }
原文地址:http://blog.csdn.net/yusiguyuan/article/details/42687365