Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[
[2],
[3,4],
[6,5,7],
[4,1,8,3]
]
The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 =
11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
class Solution
{
public:
int minimumTotal(vector<vector<int> > &triangle)
{
vector<vector<int>>& t = triangle;
int n = t.size();
if(n == 0)
return 0;
if(n==1)
return t[0][0];
for(int i=n-1; i>0; i--)
{
int m = t[i-1].size();
for(int j=0;j<m;j++)
{
t[i-1][j] = t[i-1][j] + (t[i][j]>t[i][j+1] ? t[i][j+1]:t[i][j]);
}
}
return t[0][0];
}
};原文地址:http://blog.csdn.net/shaya118/article/details/42718009