当进行半变异函数建模时,可对自相关性进行检查和量化。在地统计中,这称为空间建模,也称为结构分析或变异分析。在半变异函数的空间建模中,可以从经验半变异函数图开始,计算为,
Semivariogram(distance h) = 0.5 * average [ (value at location i– value at location j)2]
(所有成对位置的相隔距离为 h)。该公式涉及到计算配对位置的差值平方的一半。快速绘制所有配对则变得难以处理。并不绘制每个配对,而是将配对分组为各个步长条柱单元。例如,计算距离大于 40 米但小于 50 米的所有点对的平均半方差。经验半变异函数是 y 轴上的平均半变异函数值对 x 轴上的距离或步长的图(请参阅下图)。
此外,允许复制是内在平稳性假设。因此,可以使用上述半变异函数公式中的平均化。
创建经验半变异函数之后,可以根据点拟合模型,形成经验半变异函数。半变异函数建模和在回归分析中拟合最小二乘直线相似。可以选择一个函数作为模型,例如,开始上升然后在一定范围外的较大距离内趋于平稳的球面类型。
目标是计算曲线的参数以根据某些标准最小化与点的偏差。有多种半变异函数模型可供选择。
原文地址:http://blog.csdn.net/dsac1/article/details/42740295