Find the contiguous subarray within an array (containing at least one number) which has the largest product.
For example, given the array [2,3,-2,4]
,
the contiguous subarray [2,3]
has the largest product = 6
.
class Solution { public: int maxProduct(int A[], int n) { if(n==0) return -1; if(n==1) return A[0]; int max = 0; int min = 0; int res = 0; if(A[0]>0) max = A[0]; else min = A[0]; res = max; int temp_max; int temp_min; for(int i=1; i<n; i++) { temp_max = max; temp_min = min; if(A[i] > 0) { max = (temp_max!=0)? (temp_max*A[i]):A[i]; min = temp_min*A[i]; } else if(A[i] < 0) { min = (temp_max!=0) ? (temp_max*A[i]):A[i]; max = temp_min*A[i]; } else { max = 0; min = 0; } res = (max>res)? max:res; } return res; } };
另一种方法:
class Solution { public: int maxProduct(int A[], int n) { if(n==0) return -1; if(n==1) return A[0]; int* max = new int[n]; int* min = new int[n]; for(int i=0; i<n; i++) { max[i] = 0; min[i] = 0; } if(A[0]>0) max[0] = A[0]; else min[0] = A[0]; for(int i=1; i<n; i++) { if(A[i]>0) { if(max[i-1]!=0) max[i] = max[i-1]*A[i]; else max[i] = A[i]; min[i] = min[i-1]*A[i]; } else if(A[i]<0) { max[i] = min[i-1]*A[i]; if(max[i-1]!=0) min[i] = max[i-1]*A[i]; else min[i] = A[i]; } } int res = max[0]; for(int i=0; i<n; i++) { if(max[i]>res) res = max[i]; } return res; } };
LeetCode--Maximum Product Subarray
原文地址:http://blog.csdn.net/shaya118/article/details/42746151