标签:
什么是红黑树呢?顾名思义,跟枣树类似,红黑树是一种叶子是黑色果子是红色的树。。。
当然,这个是我说的。。。
《算法导论》上可不是这么说的:
如果一个二叉查找树满足下面的红黑性质,那么则为一个红黑树。
1)每个节点或是红的,或者是黑的。
2)每个叶子节点(NIL)是黑色的
3)如果一个节点是红色的,那么他的两个儿子都是黑的。
4)根节点是黑色的。
5)对于每个节点,从该节点到子孙节点的所有路径上包含相同数目的黑色节点。
我们在整个过程中会用到这些性质,当然,为了公平起见,其实即使你不知道这些性质,这个题目也是可以完成的(为什么不早说。。。。)。在红黑树的各种操作中,其核心操作被称为旋转,那么什么是旋转呢,我们来看一个例子:
假设我们这里截取红黑树的一部分,放在左边,通过操作如果可以把他转化为右边的形式,那么我们就称将根为x的子树进行了左旋,反之我们称将根为Y的树进行了右旋:
恰好慢板同学把自己红黑树弄乱了,然后请你帮忙进行修复,他将向你描述他的红黑树(混乱的。。。)。然后告诉他需要用哪种方式旋转某个节点。在你完成工作之后,直接向大黄提交新的树的中序遍历结果就好了。
Hint:
在这里好心的慢板同学给你简单的解释下样例:
最开始的时候树的样子是这样的:
0
/ \
1 2
然后对于标号为0的节点进行右旋,结果将变为:
1
\
0
\
2
然后呢。。。
中序遍历?这个是什么东西,哪个人可以告诉我下。。。。
1 3 0 1 2 1 -1 -1 2 -1 -1 1 0 1
1 0 2
思路:不用管怎么旋转,因为旋转对中序输出没有影响
代码:
#include<stdio.h> #include<stdlib.h> struct node { int x; int y; }s[20]; void fun(int n) { if(n==-1) return ; fun(s[n].x); printf("%d\n",n); fun(s[n].y); } int main(void) { int t,n,i,f,x,y; scanf("%d",&t); while(t--) { scanf("%d",&n); for(i=0;i<14;i++) { s[i].x=0; s[i].y=0; } for(i=0;i<n;i++) { scanf("%d%d%d",&f,&x,&y); s[f].x=x; s[f].y=y; } int m; scanf("%d",&m); while(m--) { scanf("%d%d",&x,&y); } fun(0); } return 0; }
标签:
原文地址:http://blog.csdn.net/qq_16997551/article/details/42783345