标签:
/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution‘s of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution‘s in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "_cv.h" #define _CV_SNAKE_BIG 2.e+38f #define _CV_SNAKE_IMAGE 1 #define _CV_SNAKE_GRAD 2 /*F/////////////////////////////////////////////////////////////////////////////////////// // Name: icvSnake8uC1R // Purpose: // Context: // Parameters: // src - source image, // srcStep - its step in bytes, // roi - size of ROI, // pt - pointer to snake points array // n - size of points array, // alpha - pointer to coefficient of continuity energy, // beta - pointer to coefficient of curvature energy, // gamma - pointer to coefficient of image energy, // coeffUsage - if CV_VALUE - alpha, beta, gamma point to single value // if CV_MATAY - point to arrays // criteria - termination criteria. // scheme - image energy scheme // if _CV_SNAKE_IMAGE - image intensity is energy // if _CV_SNAKE_GRAD - magnitude of gradient is energy // Returns: //F*/ static CvStatus icvSnake8uC1R( unsigned char *src, //原始图像数据 int srcStep, //每行的字节数 CvSize roi, //图像尺寸 CvPoint * pt, //轮廓点(变形对象) int n, //轮廓点的个数 float *alpha, //指向α的指针,α能够是单个值,也能够是与轮廓点个数一致的数组 float *beta, //β的值,同α float *gamma, //γ的值,同α int coeffUsage, //确定αβγ是用作单个值还是个数组 CvSize win, //每一个点用于搜索的最小的领域大小,宽度为奇数 CvTermCriteria criteria, //递归迭代终止的条件准则 int scheme ) //确定图像能量场的数据选择,1为灰度,2为灰度梯度 { int i, j, k; int neighbors = win.height * win.width; //当前点领域中点的个数 //当前点的位置 int centerx = win.width >> 1; int centery = win.height >> 1; float invn; //n 的倒数? int iteration = 0; //迭代次数 int converged = 0; //收敛标志,0为非收敛 //能量 float *Econt; // float *Ecurv; //轮廓曲线能量 float *Eimg; //图像能量 float *E; // //αβγ的副本 float _alpha, _beta, _gamma; /*#ifdef GRAD_SNAKE */ float *gradient = NULL; uchar *map = NULL; int map_width = ((roi.width - 1) >> 3) + 1; int map_height = ((roi.height - 1) >> 3) + 1; CvSepFilter pX, pY; #define WTILE_SIZE 8 #define TILE_SIZE (WTILE_SIZE + 2) short dx[TILE_SIZE*TILE_SIZE], dy[TILE_SIZE*TILE_SIZE]; CvMat _dx = cvMat( TILE_SIZE, TILE_SIZE, CV_16SC1, dx ); CvMat _dy = cvMat( TILE_SIZE, TILE_SIZE, CV_16SC1, dy ); CvMat _src = cvMat( roi.height, roi.width, CV_8UC1, src ); /* inner buffer of convolution process */ //char ConvBuffer[400]; /*#endif */ //检点參数的合理性 /* check bad arguments */ if( src == NULL ) return CV_NULLPTR_ERR; if( (roi.height <= 0) || (roi.width <= 0) ) return CV_BADSIZE_ERR; if( srcStep < roi.width ) return CV_BADSIZE_ERR; if( pt == NULL ) return CV_NULLPTR_ERR; if( n < 3 ) //轮廓点至少要三个 return CV_BADSIZE_ERR; if( alpha == NULL ) return CV_NULLPTR_ERR; if( beta == NULL ) return CV_NULLPTR_ERR; if( gamma == NULL ) return CV_NULLPTR_ERR; if( coeffUsage != CV_VALUE && coeffUsage != CV_ARRAY ) return CV_BADFLAG_ERR; if( (win.height <= 0) || (!(win.height & 1))) //邻域搜索窗体得是奇数 return CV_BADSIZE_ERR; if( (win.width <= 0) || (!(win.width & 1))) return CV_BADSIZE_ERR; invn = 1 / ((float) n); //轮廓点数n的倒数,用于求平均? if( scheme == _CV_SNAKE_GRAD ) { //X方向上和Y方向上的Scoble梯度算子,用于求图像的梯度, //处理的图像最大尺寸为TILE_SIZE+2,此例为12,算子半长为3即{-3,-2,-1,0,1,2,3} //处理后的数据类型为16位符号数,分别存放在_dx,_dy矩阵中,长度为10 pX.init_deriv( TILE_SIZE+2, CV_8UC1, CV_16SC1, 1, 0, 3 ); pY.init_deriv( TILE_SIZE+2, CV_8UC1, CV_16SC1, 0, 1, 3 ); //图像梯度存放缓冲区 gradient = (float *) cvAlloc( roi.height * roi.width * sizeof( float )); if( !gradient ) return CV_OUTOFMEM_ERR; //map用于标志对应位置的分块的图像能量是否已经求得 map = (uchar *) cvAlloc( map_width * map_height ); if( !map ) { cvFree( &gradient ); return CV_OUTOFMEM_ERR; } /* clear map - no gradient computed */ //清除map标志 memset( (void *) map, 0, map_width * map_height ); } //各种能量的存放处,取每点的邻域的能量 Econt = (float *) cvAlloc( neighbors * sizeof( float )); Ecurv = (float *) cvAlloc( neighbors * sizeof( float )); Eimg = (float *) cvAlloc( neighbors * sizeof( float )); E = (float *) cvAlloc( neighbors * sizeof( float )); //開始迭代 while( !converged ) //收敛标志无效时进行 { float ave_d = 0; //轮廓各点的平均距离 int moved = 0; //轮廓变形时,发生移动的数量 converged = 0; //标志未收敛 iteration++; //更新迭代次数+1 //计算轮廓中各点的平均距离 /* compute average distance */ //从点0到点n-1的距离和 for( i = 1; i < n; i++ ) { int diffx = pt[i - 1].x - pt[i].x; int diffy = pt[i - 1].y - pt[i].y; ave_d += cvSqrt( (float) (diffx * diffx + diffy * diffy) ); } //再加上从点n-1到点0的距离,形成回路轮廓 ave_d += cvSqrt( (float) ((pt[0].x - pt[n - 1].x) * (pt[0].x - pt[n - 1].x) + (pt[0].y - pt[n - 1].y) * (pt[0].y - pt[n - 1].y))); //求平均,得出平均距离 ave_d *= invn; /* average distance computed */ //对于每一个轮廓点进行特定循环迭代求解 for( i = 0; i < n; i++ ) { /* Calculate Econt */ //初始化各个能量 float maxEcont = 0; float maxEcurv = 0; float maxEimg = 0; float minEcont = _CV_SNAKE_BIG; float minEcurv = _CV_SNAKE_BIG; float minEimg = _CV_SNAKE_BIG; float Emin = _CV_SNAKE_BIG; //初始化变形后轮廓点的偏移量 int offsetx = 0; int offsety = 0; float tmp; //计算边界 /* compute bounds */ //计算合理的搜索边界,以防领域搜索超过ROI图像的范围 int left = MIN( pt[i].x, win.width >> 1 ); int right = MIN( roi.width - 1 - pt[i].x, win.width >> 1 ); int upper = MIN( pt[i].y, win.height >> 1 ); int bottom = MIN( roi.height - 1 - pt[i].y, win.height >> 1 ); //初始化Econt maxEcont = 0; minEcont = _CV_SNAKE_BIG; //在合理的搜索范围内进行Econt的计算 for( j = -upper; j <= bottom; j++ ) { for( k = -left; k <= right; k++ ) { int diffx, diffy; float energy; //在轮廓点集的首尾相接处作对应处理,求轮廓点差分 if( i == 0 ) { diffx = pt[n - 1].x - (pt[i].x + k); diffy = pt[n - 1].y - (pt[i].y + j); } else //在其它地方作一般处理 { diffx = pt[i - 1].x - (pt[i].x + k); diffy = pt[i - 1].y - (pt[i].y + j); } //将邻域陈列坐标转成Econt数组的下标序号,计算邻域中每点的Econt //Econt的值等于平均距离和此点和上一点的距离的差的绝对值(这是怎么来的?) Econt[(j + centery) * win.width + k + centerx] = energy = (float) fabs( ave_d - cvSqrt( (float) (diffx * diffx + diffy * diffy) )); //求出全部邻域点中的Econt的最大值和最小值 maxEcont = MAX( maxEcont, energy ); minEcont = MIN( minEcont, energy ); } } //求出邻域点中最大值和最小值之差,并对全部的邻域点的Econt进行标准归一化,若最大值最小 //相等,则邻域中的点Econt全相等,Econt归一化束缚为0 tmp = maxEcont - minEcont; tmp = (tmp == 0) ? 0 : (1 / tmp); for( k = 0; k < neighbors; k++ ) { Econt[k] = (Econt[k] - minEcont) * tmp; } //计算每点的Ecurv /* Calculate Ecurv */ maxEcurv = 0; minEcurv = _CV_SNAKE_BIG; for( j = -upper; j <= bottom; j++ ) { for( k = -left; k <= right; k++ ) { int tx, ty; float energy; //第一个点的二阶差分 if( i == 0 ) { tx = pt[n - 1].x - 2 * (pt[i].x + k) + pt[i + 1].x; ty = pt[n - 1].y - 2 * (pt[i].y + j) + pt[i + 1].y; } //最后一个点的二阶差分 else if( i == n - 1 ) { tx = pt[i - 1].x - 2 * (pt[i].x + k) + pt[0].x; ty = pt[i - 1].y - 2 * (pt[i].y + j) + pt[0].y; } //其余点的二阶差分 else { tx = pt[i - 1].x - 2 * (pt[i].x + k) + pt[i + 1].x; ty = pt[i - 1].y - 2 * (pt[i].y + j) + pt[i + 1].y; } //转换坐标为数组序号,并求各点的Ecurv的值,二阶差分后取平方 Ecurv[(j + centery) * win.width + k + centerx] = energy = (float) (tx * tx + ty * ty); //取最小的Ecurv和最大的Ecurv maxEcurv = MAX( maxEcurv, energy ); minEcurv = MIN( minEcurv, energy ); } } //对Ecurv进行标准归一化 tmp = maxEcurv - minEcurv; tmp = (tmp == 0) ? 0 : (1 / tmp); for( k = 0; k < neighbors; k++ ) { Ecurv[k] = (Ecurv[k] - minEcurv) * tmp; } //求Eimg /* Calculate Eimg */ for( j = -upper; j <= bottom; j++ ) { for( k = -left; k <= right; k++ ) { float energy; //若採用灰度梯度数据 if( scheme == _CV_SNAKE_GRAD ) { /* look at map and check status */ int x = (pt[i].x + k)/WTILE_SIZE; int y = (pt[i].y + j)/WTILE_SIZE; //若此处的图像能量还没有获取,则对此处对应的图像分块进行图像能量的求解 if( map[y * map_width + x] == 0 ) { int l, m; /* evaluate block location */ //计算要进行梯度算子处理的图像块的位置 int upshift = y ? 1 : 0; int leftshift = x ? 1 : 0; int bottomshift = MIN( 1, roi.height - (y + 1)*WTILE_SIZE ); int rightshift = MIN( 1, roi.width - (x + 1)*WTILE_SIZE ); //图像块的位置大小(因为原ROI不一定是8的倍数,所以图像块会大小不一) CvRect g_roi = { x*WTILE_SIZE - leftshift, y*WTILE_SIZE - upshift, leftshift + WTILE_SIZE + rightshift, upshift + WTILE_SIZE + bottomshift }; CvMat _src1; cvGetSubArr( &_src, &_src1, g_roi ); //得到图像块的数据 //分别对图像的X方向和Y方向进行梯度算子 pX.process( &_src1, &_dx ); pY.process( &_src1, &_dy ); //求分块区域中的每一个点的梯度 for( l = 0; l < WTILE_SIZE + bottomshift; l++ ) { for( m = 0; m < WTILE_SIZE + rightshift; m++ ) { gradient[(y*WTILE_SIZE + l) * roi.width + x*WTILE_SIZE + m] = (float) (dx[(l + upshift) * TILE_SIZE + m + leftshift] * dx[(l + upshift) * TILE_SIZE + m + leftshift] + dy[(l + upshift) * TILE_SIZE + m + leftshift] * dy[(l + upshift) * TILE_SIZE + m + leftshift]); } } //map对应位置置1表示此处图像能量已经获取 map[y * map_width + x] = 1; } //以梯度数据作为图像能量 Eimg[(j + centery) * win.width + k + centerx] = energy = gradient[(pt[i].y + j) * roi.width + pt[i].x + k]; } else { //以灰度作为图像能量 Eimg[(j + centery) * win.width + k + centerx] = energy = src[(pt[i].y + j) * srcStep + pt[i].x + k]; } //获得邻域中最大和最小的图像能量 maxEimg = MAX( maxEimg, energy ); minEimg = MIN( minEimg, energy ); } } //Eimg的标准归一化 tmp = (maxEimg - minEimg); tmp = (tmp == 0) ? 0 : (1 / tmp); for( k = 0; k < neighbors; k++ ) { Eimg[k] = (minEimg - Eimg[k]) * tmp; } //增加系数 /* locate coefficients */ if( coeffUsage == CV_VALUE) { _alpha = *alpha; _beta = *beta; _gamma = *gamma; } else { _alpha = alpha[i]; _beta = beta[i]; _gamma = gamma[i]; } /* Find Minimize point in the neighbors */ //求得每一个邻域点的Snake能量 for( k = 0; k < neighbors; k++ ) { E[k] = _alpha * Econt[k] + _beta * Ecurv[k] + _gamma * Eimg[k]; } Emin = _CV_SNAKE_BIG; //获取最小的能量,以及对应的邻域中的相对位置 for( j = -upper; j <= bottom; j++ ) { for( k = -left; k <= right; k++ ) { if( E[(j + centery) * win.width + k + centerx] < Emin ) { Emin = E[(j + centery) * win.width + k + centerx]; offsetx = k; offsety = j; } } } //假设轮廓点发生改变,则记得移动次数 if( offsetx || offsety ) { pt[i].x += offsetx; pt[i].y += offsety; moved++; } } //各个轮廓点迭代计算完毕后,假设没有移动的点了,则收敛标志位有效,停止迭代 converged = (moved == 0); //达到最大迭代次数时,收敛标志位有效,停止迭代 if( (criteria.type & CV_TERMCRIT_ITER) && (iteration >= criteria.max_iter) ) converged = 1; //到大对应精度时,停止迭代(与第一个条件有同样效果) if( (criteria.type & CV_TERMCRIT_EPS) && (moved <= criteria.epsilon) ) converged = 1; } //释放各个缓冲区 cvFree( &Econt ); cvFree( &Ecurv ); cvFree( &Eimg ); cvFree( &E ); if( scheme == _CV_SNAKE_GRAD ) { cvFree( &gradient ); cvFree( &map ); } return CV_OK; } CV_IMPL void cvSnakeImage( const IplImage* src, CvPoint* points, int length, float *alpha, float *beta, float *gamma, int coeffUsage, CvSize win, CvTermCriteria criteria, int calcGradient ) { CV_FUNCNAME( "cvSnakeImage" ); __BEGIN__; uchar *data; CvSize size; int step; if( src->nChannels != 1 ) CV_ERROR( CV_BadNumChannels, "input image has more than one channel" ); if( src->depth != IPL_DEPTH_8U ) CV_ERROR( CV_BadDepth, cvUnsupportedFormat ); cvGetRawData( src, &data, &step, &size ); IPPI_CALL( icvSnake8uC1R( data, step, size, points, length, alpha, beta, gamma, coeffUsage, win, criteria, calcGradient ? _CV_SNAKE_GRAD : _CV_SNAKE_IMAGE )); __END__; } /* end of file */ 測试应用程序 #include "stdafx.h" #include <iostream> #include <string.h> #include <cxcore.h> #include <cv.h> #include <highgui.h> #include <fstream> IplImage *image = 0 ; //原始图像 IplImage *image2 = 0 ; //原始图像copy using namespace std; int Thresholdness = 141; int ialpha = 20; int ibeta=20; int igamma=20; void onChange(int pos) { if(image2) cvReleaseImage(&image2); if(image) cvReleaseImage(&image); image2 = cvLoadImage("grey.bmp",1); //显示图片 image= cvLoadImage("grey.bmp",0); cvThreshold(image,image,Thresholdness,255,CV_THRESH_BINARY); //切割域值 CvMemStorage* storage = cvCreateMemStorage(0); CvSeq* contours = 0; cvFindContours( image, storage, &contours, sizeof(CvContour), //寻找初始化轮廓 CV_RETR_EXTERNAL , CV_CHAIN_APPROX_SIMPLE ); if(!contours) return ; int length = contours->total; if(length<10) return ; CvPoint* point = new CvPoint[length]; //分配轮廓点 CvSeqReader reader; CvPoint pt= cvPoint(0,0);; CvSeq *contour2=contours; cvStartReadSeq(contour2, &reader); for (int i = 0; i < length; i++) { CV_READ_SEQ_ELEM(pt, reader); point[i]=pt; } cvReleaseMemStorage(&storage); //显示轮廓曲线 for(int i=0;i<length;i++) { int j = (i+1)%length; cvLine( image2, point[i],point[j],CV_RGB( 0, 0, 255 ),1,8,0 ); } float alpha=ialpha/100.0f; float beta=ibeta/100.0f; float gamma=igamma/100.0f; CvSize size; size.width=3; size.height=3; CvTermCriteria criteria; criteria.type=CV_TERMCRIT_ITER; criteria.max_iter=1000; criteria.epsilon=0.1; cvSnakeImage( image, point,length,&alpha,&beta,&gamma,CV_VALUE,size,criteria,0 ); //显示曲线 for(int i=0;i<length;i++) { int j = (i+1)%length; cvLine( image2, point[i],point[j],CV_RGB( 0, 255, 0 ),1,8,0 ); } delete []point; } int main(int argc, char* argv[]) { cvNamedWindow("win1",0); cvCreateTrackbar("Thd", "win1", &Thresholdness, 255, onChange); cvCreateTrackbar("alpha", "win1", &ialpha, 100, onChange); cvCreateTrackbar("beta", "win1", &ibeta, 100, onChange); cvCreateTrackbar("gamma", "win1", &igamma, 100, onChange); cvResizeWindow("win1",300,500); onChange(0); for(;;) { if(cvWaitKey(40)==27) break; cvShowImage("win1",image2); } return 0; }
转:http://shi-xj.blog.163.com/blog/static/3178051520110911234254/
标签:
原文地址:http://www.cnblogs.com/gcczhongduan/p/4230114.html