标签:
泰勒系列公式在计算中占有很重要的位置,比如计算近似值,极限等。泰勒公式在实际应用中需要特别注意的是一定要使得收敛到某个数,用得最多的是使其趋于零,如果该项在展开后不能趋于零(定值),则展开往往没有意义,因为泰勒展开的目的是可以利用高阶无穷小来达到舍弃一些项,从而简化计算。这里我们可以分析一下上式:1)(n+1)!,一般我们在舍弃时,n都不可能取很大,因此这一项一般情况下只能作为常数考虑,不能作为舍弃的依据;(x-x0),这一项随着n的增大,如果|x-x0|>1,则不容易能被舍弃,如果|x-x0|/(n+1)!,不能趋于0,则基本不能作为舍弃项,因此一般情况下,我们需要使得|x-x0|小于1,这样,在n比较小的时候,使得整个式子可以被舍弃;当然,也要考虑到n+1阶导数项值,但由于我们在应用中多半为了便于计算导数,选取的值都比较特殊,比如0,或者1之类的,也不适合作为高阶无穷小的部分。综合上述,我们在对函数进行泰勒展开时,一般情况下,应尽量确保|x-x0|<1,举个简单的例子,在计算30的立方根时,如果选择函数f(x)=x^1/3,就达不到预期目的,而选取f(x)=3(1+x)^1/3,则就比较容易达到目的.因此在实际应用中,可以通过简单的变量替换,使得展开式的余项尽可能小。
标签:
原文地址:http://blog.csdn.net/hawksoft/article/details/42815393