码迷,mamicode.com
首页 > 其他好文 > 详细

深入select_related与prefetch_related函数

时间:2015-01-18 18:34:27      阅读:148      评论:0      收藏:0      [点我收藏+]

标签:

阅读博客http://blog.jobbole.com/74881/的笔记

在数据库有外键的时候,使用select_related()和prefetch_related()可以很好的减少数据库请求的次数,从而提高性能.

下面是数据库设计图

技术分享

models.py如下:

from django.db import models
 
class Province(models.Model):
    name = models.CharField(max_length=10)
    def __unicode__(self):
        return self.name
 
class City(models.Model):
    name = models.CharField(max_length=5)
    province = models.ForeignKey(Province)
    def __unicode__(self):
        return self.name
 
class Person(models.Model):
    firstname  = models.CharField(max_length=10)
    lastname   = models.CharField(max_length=10)
    visitation = models.ManyToManyField(City, related_name = "visitor")
    hometown   = models.ForeignKey(City, related_name = "birth")
    living     = models.ForeignKey(City, related_name = "citizen")
    def __unicode__(self):
        return self.firstname + self.lastname

app名为"QSOptimize"

`qsoptimize_province` 表中只有2条数据:湖北省和广东省,`qsoptimize_city`表中只有三条数据:武汉市、十堰市和广州市


 

select_related()

对于一对一字段(OneToOneField)和外键字段(ForeignKey),可以使用select_related()来对QuerySet进行优化.

在对QuerySet使用select_related()函数后,Django会获取相应外键对应的对象,从而在之后需要的时候不必再查询数据库了。

一个例子:

>>> citys = City.objects.all()
>>> for c in citys:
...   print c.province

这样会导致线性的SQL查询,SQL查询语句如下:

SELECT `QSOptimize_city`.`id`, `QSOptimize_city`.`name`, `QSOptimize_city`.`province_id`
FROM `QSOptimize_city`
 
SELECT `QSOptimize_province`.`id`, `QSOptimize_province`.`name`
FROM `QSOptimize_province`
WHERE `QSOptimize_province`.`id` = 1 ;
 
SELECT `QSOptimize_province`.`id`, `QSOptimize_province`.`name`
FROM `QSOptimize_province`
WHERE `QSOptimize_province`.`id` = 2 ;
 
SELECT `QSOptimize_province`.`id`, `QSOptimize_province`.`name`
FROM `QSOptimize_province`
WHERE `QSOptimize_province`.`id` = 1 ;

使用select_related()函数后

>>> citys = City.objects.select_related().all()
>>> for c in citys:
...   print c.province

就只有一次SQL查询,大大减少SQL查询次数

SELECT `QSOptimize_city`.`id`, `QSOptimize_city`.`name`,
`QSOptimize_city`.`province_id`, `QSOptimize_province`.`id`, `QSOptimize_province`.`name`
FROM`QSOptimize_city`
INNER JOIN `QSOptimize_province` ON (`QSOptimize_city`.`province_id` = `QSOptimize_province`.`id`) ;

django使用了INNER JOIN来获得省份的信息.

使用方法

select_related() 接受可变长参数,每个参数是需要获取的外键(父表的内容)的字段名,以及外键的外键的字段名、外键的外键的外键…。若要选择外键的外键需要使用两个下划线“__”来连接。

例如获得张三的现居省份

>>> zhangs = Person.objects.select_related(‘living__province‘).get(firstname=u"张",lastname=u"三")
>>> zhangs.living.province

触发的SQL:

SELECT `QSOptimize_person`.`id`, `QSOptimize_person`.`firstname`,
`QSOptimize_person`.`lastname`, `QSOptimize_person`.`hometown_id`, `QSOptimize_person`.`living_id`,
`QSOptimize_city`.`id`, `QSOptimize_city`.`name`, `QSOptimize_city`.`province_id`, `QSOptimize_province`.`id`,
`QSOptimize_province`.`name`
FROM `QSOptimize_person`
INNER JOIN `QSOptimize_city` ON (`QSOptimize_person`.`living_id` = `QSOptimize_city`.`id`)
INNER JOIN `QSOptimize_province` ON (`QSOptimize_city`.`province_id` = `QSOptimize_province`.`id`)
WHERE (`QSOptimize_person`.`lastname` = ‘三‘  AND `QSOptimize_person`.`firstname` = ‘张‘ );

django使用了两次INNER JOIN来完成请求,但是未指定的外键则不会被添加到结果中,例如张三的故乡.

django1.7以前同时指定两个外键使用

zhangs = Person.objects.select_related(‘hometown__province‘,‘living__province‘).get(firstname=u"张",lastname=u"三")

1.7后使用

zhangs = Person.objects.select_related(‘hometown__province‘).select_related(‘living__province‘).get(firstname=u"张",lastname=u"三")

depth参数

select_related() 接受depth参数,depth参数可以确定select_related的深度。Django会递归遍历指定深度内的所有的OneToOneField和ForeignKey.

zhangs = Person.objects.select_related(depth = d)

d=1  相当于 select_related(‘hometown’,‘living’)

d=2  相当于 select_related(‘hometown__province’,‘living__province’)

无参数

select_related() 也可以不加参数,这样表示要求Django尽可能深的select_related。例如:zhangs = Person.objects.select_related().get(firstname=u”张”,lastname=u”三”)。但要注意两 点:

  1. Django本身内置一个上限,对于特别复杂的表关系,Django可能在你不知道的某处跳出递归,从而与你想的做法不一样。具体限制是怎么工作的我表示不清楚。
  2. Django并不知道你实际要用的字段有哪些,所以会把所有的字段都抓进来,从而会造成不必要的浪费而影响性能。

小结

  1. select_related主要针一对一和多对一关系进行优化。
  2. select_related使用SQL的JOIN语句进行优化,通过减少SQL查询的次数来进行优化、提高性能。
  3. 可以通过可变长参数指定需要select_related的字段名。也可以通过使用双下划线“__”连接字段名来实现指定的递归查询。没有指定的字段不会缓存,没有指定的深度不会缓存,如果要访问的话Django会再次进行SQL查询。
  4. 也可以通过depth参数指定递归的深度,Django会自动缓存指定深度内所有的字段。如果要访问指定深度外的字段,Django会再次进行SQL查询。
  5. 也接受无参数的调用,Django会尽可能深的递归查询所有的字段。但注意有Django递归的限制和性能的浪费。
  6. Django >= 1.7,链式调用的select_related相当于使用可变长参数。Django < 1.7,链式调用会导致前边的select_related失效,只保留最后一个。

 

 

prefetch_related()

对于多对多字段(ManyToManyField)和一对多(ForeignKey)字段,可以使用prefetch_related()来进行优化.

prefetch_related()和select_related()的设计目的很相似,都是为了减少SQL查询的数量,但是实现的方式不一样。后者 是通过JOIN语句,在SQL查询内解决问题。但是对于多对多关系,使用SQL语句解决就显得有些不太明智,因为JOIN得到的表将会很长,会导致SQL 语句运行时间的增加和内存占用的增加。若有n个对象,每个对象的多对多字段对应Mi条,就会生成Σ(n)Mi 行的结果表。

prefetch_related()的解决方法是,分别查询每个表,然后用Python处理他们之间的关系。

如果我们要获得张三所有去过的城市.

>>> zhangs = Person.objects.prefetch_related(‘visitation‘).get(firstname=u"张",lastname=u"三")
>>> for city in zhangs.visitation.all() :
...   print city
...

  

深入select_related与prefetch_related函数

标签:

原文地址:http://www.cnblogs.com/tuifeideyouran/p/4232028.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!