标签:dp
Description
Yesterday, my teacher taught us about math: +, -, *, /, GCD, LCM... As you know, LCM (Least common multiple) of two positive numbers can be solved easily because of a * b = GCD (a, b) * LCM (a, b).
In class, I raised a new idea: "how to calculate the LCM of K numbers". It‘s also an easy problem indeed, which only cost me 1 minute to solve it. I raised my hand and told teacher about my outstanding algorithm. Teacher just smiled and smiled...
After class, my teacher gave me a new problem and he wanted me solve it in 1 minute, too. If we know three parameters N, M, K, and two equations:
1. SUM (A1, A2, ..., Ai, Ai+1,..., AK) = N
2. LCM (A1, A2, ..., Ai, Ai+1,..., AK) = M
Can you calculate how many kinds of solutions are there for Ai (Ai are all positive numbers). I began to roll cold sweat but teacher just smiled and smiled.
Can you solve this problem in 1 minute?
Input
There are multiple test cases.
Each test case contains three integers N, M, K. (1 ≤ N, M ≤ 1,000, 1 ≤ K ≤ 100)
Output
For each test case, output an integer indicating the number of solution modulo 1,000,000,007(1e9 + 7).
You can get more details in the sample and hint below.
Sample Input
4 2 2 3 2 2
Sample Output
1 2
The first test case: the only solution is (2, 2).
The second test case: the solution are (1, 2) and (2, 1).
题意:有K个正整数,和为N,最小公倍数为M,求有多少种组合。
分析:因这K个数是M的因子,而M的所有因子又是所有可能组成的最小公倍数的情况,然而N,M<=1000,所以1000以内的数的最多因子个数为35个,所以只需记录下来,用离散化的思想就可以解决。
#include<stdio.h> #include<string.h> const int MOD = 1e9+7; int dp[2][1005][1005]; int LCM[1005][1005],N,M,K,num[105],cet; int gcd(int a,int b) { if(b==0) return a; return gcd(b,a%b); } int lcm(int a,int b) { return (a*b)/gcd(a,b); } int main() { for(int i=1;i<=1000;i++) for(int j=1;j<=1000;j++) LCM[i][j]=lcm(i,j); while(scanf("%d%d%d",&N,&M,&K)!=EOF) { cet=0; for(int i=1;i<=M;i++) if(M%i==0) num[++cet]=i; for(int i=0;i<=N;i++)//和 for(int j=1;j<=cet;j++)//最小公倍数 dp[0][i][num[j]]=0; dp[0][0][1]=1; int flag=0,ss,ff; for(int k=1;k<=K;k++) { flag^=1; for(int i=k;i<=N;i++) for(int j=1;j<=cet;j++) dp[flag][i][num[j]]=0; for(int s=k-1;s<=N;s++)//k-1个数至少和为k-1 for(int c=1;c<=cet;c++)//每个最小公倍数 { if(dp[flag^1][s][num[c]]==0) continue; for(int i=1;i<=cet;i++)//每个因子 { ss=s+num[i]; ff=LCM[num[c]][num[i]]; if(ss>N||M%ff!=0)continue; dp[flag][ss][ff]+=dp[flag^1][s][num[c]]; dp[flag][ss][ff]%=MOD; } } } printf("%d\n",dp[flag][N][M]); } }
标签:dp
原文地址:http://blog.csdn.net/u010372095/article/details/42836761